core-legacy/vendor/mpack.c

6441 lines
211 KiB
C
Raw Normal View History

2020-05-05 09:42:02 +00:00
/**
* The MIT License (MIT)
*
* Copyright (c) 2015-2018 Nicholas Fraser
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
/*
* This is the MPack 1.0 amalgamation package.
*
* http://github.com/ludocode/mpack
*/
#define MPACK_INTERNAL 1
#define MPACK_EMIT_INLINE_DEFS 1
#include "mpack.h"
/* mpack/mpack-platform.c.c */
// We define MPACK_EMIT_INLINE_DEFS and include mpack.h to emit
// standalone definitions of all (non-static) inline functions in MPack.
#define MPACK_INTERNAL 1
#define MPACK_EMIT_INLINE_DEFS 1
/* #include "mpack-platform.h" */
/* #include "mpack.h" */
#if MPACK_DEBUG && MPACK_STDIO
#include <stdarg.h>
#endif
#if MPACK_DEBUG
#if MPACK_STDIO
void mpack_assert_fail_format(const char* format, ...) {
char buffer[512];
va_list args;
va_start(args, format);
vsnprintf(buffer, sizeof(buffer), format, args);
va_end(args);
buffer[sizeof(buffer) - 1] = 0;
mpack_assert_fail_wrapper(buffer);
}
void mpack_break_hit_format(const char* format, ...) {
char buffer[512];
va_list args;
va_start(args, format);
vsnprintf(buffer, sizeof(buffer), format, args);
va_end(args);
buffer[sizeof(buffer) - 1] = 0;
mpack_break_hit(buffer);
}
#endif
#if !MPACK_CUSTOM_ASSERT
void mpack_assert_fail(const char* message) {
MPACK_UNUSED(message);
#if MPACK_STDIO
fprintf(stderr, "%s\n", message);
#endif
}
#endif
// We split the assert failure from the wrapper so that a
// custom assert function can return.
void mpack_assert_fail_wrapper(const char* message) {
#ifdef MPACK_GCOV
// gcov marks even __builtin_unreachable() as an uncovered line. this
// silences it.
(mpack_assert_fail(message), __builtin_unreachable());
#else
mpack_assert_fail(message);
// mpack_assert_fail() is not supposed to return. in case it does, we
// abort.
#if !MPACK_NO_BUILTINS
#if defined(__GNUC__) || defined(__clang__)
__builtin_trap();
#elif defined(WIN32)
__debugbreak();
#endif
#endif
#if (defined(__GNUC__) || defined(__clang__)) && !MPACK_NO_BUILTINS
__builtin_abort();
#elif MPACK_STDLIB
abort();
#endif
MPACK_UNREACHABLE;
#endif
}
#if !MPACK_CUSTOM_BREAK
// If we have a custom assert handler, break wraps it by default.
// This allows users of MPack to only implement mpack_assert_fail() without
// having to worry about the difference between assert and break.
//
// MPACK_CUSTOM_BREAK is available to define a separate break handler
// (which is needed by the unit test suite), but this is not offered in
// mpack-config.h for simplicity.
#if MPACK_CUSTOM_ASSERT
void mpack_break_hit(const char* message) {
mpack_assert_fail_wrapper(message);
}
#else
void mpack_break_hit(const char* message) {
MPACK_UNUSED(message);
#if MPACK_STDIO
fprintf(stderr, "%s\n", message);
#endif
#if defined(__GNUC__) || defined(__clang__) && !MPACK_NO_BUILTINS
__builtin_trap();
#elif defined(WIN32) && !MPACK_NO_BUILTINS
__debugbreak();
#elif MPACK_STDLIB
abort();
#endif
}
#endif
#endif
#endif
// The below are adapted from the C wikibook:
// https://en.wikibooks.org/wiki/C_Programming/Strings
#ifndef mpack_memcmp
int mpack_memcmp(const void* s1, const void* s2, size_t n) {
const unsigned char *us1 = (const unsigned char *) s1;
const unsigned char *us2 = (const unsigned char *) s2;
while (n-- != 0) {
if (*us1 != *us2)
return (*us1 < *us2) ? -1 : +1;
us1++;
us2++;
}
return 0;
}
#endif
#ifndef mpack_memcpy
void* mpack_memcpy(void* MPACK_RESTRICT s1, const void* MPACK_RESTRICT s2, size_t n) {
char* MPACK_RESTRICT dst = (char *)s1;
const char* MPACK_RESTRICT src = (const char *)s2;
while (n-- != 0)
*dst++ = *src++;
return s1;
}
#endif
#ifndef mpack_memmove
void* mpack_memmove(void* s1, const void* s2, size_t n) {
char *p1 = (char *)s1;
const char *p2 = (const char *)s2;
if (p2 < p1 && p1 < p2 + n) {
p2 += n;
p1 += n;
while (n-- != 0)
*--p1 = *--p2;
} else
while (n-- != 0)
*p1++ = *p2++;
return s1;
}
#endif
#ifndef mpack_memset
void* mpack_memset(void* s, int c, size_t n) {
unsigned char *us = (unsigned char *)s;
unsigned char uc = (unsigned char)c;
while (n-- != 0)
*us++ = uc;
return s;
}
#endif
#ifndef mpack_strlen
size_t mpack_strlen(const char* s) {
const char* p = s;
while (*p != '\0')
p++;
return (size_t)(p - s);
}
#endif
#if defined(MPACK_MALLOC) && !defined(MPACK_REALLOC)
void* mpack_realloc(void* old_ptr, size_t used_size, size_t new_size) {
if (new_size == 0) {
if (old_ptr)
MPACK_FREE(old_ptr);
return NULL;
}
void* new_ptr = MPACK_MALLOC(new_size);
if (new_ptr == NULL)
return NULL;
mpack_memcpy(new_ptr, old_ptr, used_size);
MPACK_FREE(old_ptr);
return new_ptr;
}
#endif
/* mpack/mpack-common.c.c */
#define MPACK_INTERNAL 1
/* #include "mpack-common.h" */
#if MPACK_DEBUG && MPACK_STDIO
#include <stdarg.h>
#endif
const char* mpack_error_to_string(mpack_error_t error) {
#if MPACK_STRINGS
switch (error) {
#define MPACK_ERROR_STRING_CASE(e) case e: return #e
MPACK_ERROR_STRING_CASE(mpack_ok);
MPACK_ERROR_STRING_CASE(mpack_error_io);
MPACK_ERROR_STRING_CASE(mpack_error_invalid);
MPACK_ERROR_STRING_CASE(mpack_error_unsupported);
MPACK_ERROR_STRING_CASE(mpack_error_type);
MPACK_ERROR_STRING_CASE(mpack_error_too_big);
MPACK_ERROR_STRING_CASE(mpack_error_memory);
MPACK_ERROR_STRING_CASE(mpack_error_bug);
MPACK_ERROR_STRING_CASE(mpack_error_data);
MPACK_ERROR_STRING_CASE(mpack_error_eof);
#undef MPACK_ERROR_STRING_CASE
}
mpack_assert(0, "unrecognized error %i", (int)error);
return "(unknown mpack_error_t)";
#else
MPACK_UNUSED(error);
return "";
#endif
}
const char* mpack_type_to_string(mpack_type_t type) {
#if MPACK_STRINGS
switch (type) {
#define MPACK_TYPE_STRING_CASE(e) case e: return #e
MPACK_TYPE_STRING_CASE(mpack_type_missing);
MPACK_TYPE_STRING_CASE(mpack_type_nil);
MPACK_TYPE_STRING_CASE(mpack_type_bool);
MPACK_TYPE_STRING_CASE(mpack_type_float);
MPACK_TYPE_STRING_CASE(mpack_type_double);
MPACK_TYPE_STRING_CASE(mpack_type_int);
MPACK_TYPE_STRING_CASE(mpack_type_uint);
MPACK_TYPE_STRING_CASE(mpack_type_str);
MPACK_TYPE_STRING_CASE(mpack_type_bin);
MPACK_TYPE_STRING_CASE(mpack_type_array);
MPACK_TYPE_STRING_CASE(mpack_type_map);
#if MPACK_EXTENSIONS
MPACK_TYPE_STRING_CASE(mpack_type_ext);
#endif
#undef MPACK_TYPE_STRING_CASE
}
mpack_assert(0, "unrecognized type %i", (int)type);
return "(unknown mpack_type_t)";
#else
MPACK_UNUSED(type);
return "";
#endif
}
int mpack_tag_cmp(mpack_tag_t left, mpack_tag_t right) {
// positive numbers may be stored as int; convert to uint
if (left.type == mpack_type_int && left.v.i >= 0) {
left.type = mpack_type_uint;
left.v.u = (uint64_t)left.v.i;
}
if (right.type == mpack_type_int && right.v.i >= 0) {
right.type = mpack_type_uint;
right.v.u = (uint64_t)right.v.i;
}
if (left.type != right.type)
return ((int)left.type < (int)right.type) ? -1 : 1;
switch (left.type) {
case mpack_type_missing: // fallthrough
case mpack_type_nil:
return 0;
case mpack_type_bool:
return (int)left.v.b - (int)right.v.b;
case mpack_type_int:
if (left.v.i == right.v.i)
return 0;
return (left.v.i < right.v.i) ? -1 : 1;
case mpack_type_uint:
if (left.v.u == right.v.u)
return 0;
return (left.v.u < right.v.u) ? -1 : 1;
case mpack_type_array:
case mpack_type_map:
if (left.v.n == right.v.n)
return 0;
return (left.v.n < right.v.n) ? -1 : 1;
case mpack_type_str:
case mpack_type_bin:
if (left.v.l == right.v.l)
return 0;
return (left.v.l < right.v.l) ? -1 : 1;
#if MPACK_EXTENSIONS
case mpack_type_ext:
if (left.exttype == right.exttype) {
if (left.v.l == right.v.l)
return 0;
return (left.v.l < right.v.l) ? -1 : 1;
}
return (int)left.exttype - (int)right.exttype;
#endif
// floats should not normally be compared for equality. we compare
// with memcmp() to silence compiler warnings, but this will return
// equal if both are NaNs with the same representation (though we may
// want this, for instance if you are for some bizarre reason using
// floats as map keys.) i'm not sure what the right thing to
// do is here. check for NaN first? always return false if the type
// is float? use operator== and pragmas to silence compiler warning?
// please send me your suggestions.
// note also that we don't convert floats to doubles, so when this is
// used for ordering purposes, all floats are ordered before all
// doubles.
case mpack_type_float:
return mpack_memcmp(&left.v.f, &right.v.f, sizeof(left.v.f));
case mpack_type_double:
return mpack_memcmp(&left.v.d, &right.v.d, sizeof(left.v.d));
}
mpack_assert(0, "unrecognized type %i", (int)left.type);
return false;
}
#if MPACK_DEBUG && MPACK_STDIO
static char mpack_hex_char(uint8_t hex_value) {
return (hex_value < 10) ? (char)('0' + hex_value) : (char)('a' + (hex_value - 10));
}
static void mpack_tag_debug_complete_bin_ext(mpack_tag_t tag, size_t string_length, char* buffer, size_t buffer_size,
const char* prefix, size_t prefix_size)
{
// If at any point in this function we run out of space in the buffer, we
// bail out. The outer tag print wrapper will make sure we have a
// null-terminator.
if (string_length == 0 || string_length >= buffer_size)
return;
buffer += string_length;
buffer_size -= string_length;
size_t total = mpack_tag_bytes(&tag);
if (total == 0) {
strncpy(buffer, ">", buffer_size);
return;
}
strncpy(buffer, ": ", buffer_size);
if (buffer_size < 2)
return;
buffer += 2;
buffer_size -= 2;
size_t hex_bytes = 0;
for (size_t i = 0; i < MPACK_PRINT_BYTE_COUNT && i < prefix_size && buffer_size > 2; ++i) {
uint8_t byte = (uint8_t)prefix[i];
buffer[0] = mpack_hex_char((uint8_t)(byte >> 4));
buffer[1] = mpack_hex_char((uint8_t)(byte & 0xfu));
buffer += 2;
buffer_size -= 2;
++hex_bytes;
}
if (buffer_size != 0)
mpack_snprintf(buffer, buffer_size, "%s>", (total > hex_bytes) ? "..." : "");
}
static void mpack_tag_debug_pseudo_json_bin(mpack_tag_t tag, char* buffer, size_t buffer_size,
const char* prefix, size_t prefix_size)
{
mpack_assert(mpack_tag_type(&tag) == mpack_type_bin);
size_t length = (size_t)mpack_snprintf(buffer, buffer_size, "<binary data of length %u", tag.v.l);
mpack_tag_debug_complete_bin_ext(tag, length, buffer, buffer_size, prefix, prefix_size);
}
#if MPACK_EXTENSIONS
static void mpack_tag_debug_pseudo_json_ext(mpack_tag_t tag, char* buffer, size_t buffer_size,
const char* prefix, size_t prefix_size)
{
mpack_assert(mpack_tag_type(&tag) == mpack_type_ext);
size_t length = (size_t)mpack_snprintf(buffer, buffer_size, "<ext data of type %i and length %u",
mpack_tag_ext_exttype(&tag), mpack_tag_ext_length(&tag));
mpack_tag_debug_complete_bin_ext(tag, length, buffer, buffer_size, prefix, prefix_size);
}
#endif
static void mpack_tag_debug_pseudo_json_impl(mpack_tag_t tag, char* buffer, size_t buffer_size,
const char* prefix, size_t prefix_size)
{
switch (tag.type) {
case mpack_type_missing:
mpack_snprintf(buffer, buffer_size, "<missing!>");
return;
case mpack_type_nil:
mpack_snprintf(buffer, buffer_size, "null");
return;
case mpack_type_bool:
mpack_snprintf(buffer, buffer_size, tag.v.b ? "true" : "false");
return;
case mpack_type_int:
mpack_snprintf(buffer, buffer_size, "%" PRIi64, tag.v.i);
return;
case mpack_type_uint:
mpack_snprintf(buffer, buffer_size, "%" PRIu64, tag.v.u);
return;
case mpack_type_float:
mpack_snprintf(buffer, buffer_size, "%f", tag.v.f);
return;
case mpack_type_double:
mpack_snprintf(buffer, buffer_size, "%f", tag.v.d);
return;
case mpack_type_str:
mpack_snprintf(buffer, buffer_size, "<string of %u bytes>", tag.v.l);
return;
case mpack_type_bin:
mpack_tag_debug_pseudo_json_bin(tag, buffer, buffer_size, prefix, prefix_size);
return;
#if MPACK_EXTENSIONS
case mpack_type_ext:
mpack_tag_debug_pseudo_json_ext(tag, buffer, buffer_size, prefix, prefix_size);
return;
#endif
case mpack_type_array:
mpack_snprintf(buffer, buffer_size, "<array of %u elements>", tag.v.n);
return;
case mpack_type_map:
mpack_snprintf(buffer, buffer_size, "<map of %u key-value pairs>", tag.v.n);
return;
}
mpack_snprintf(buffer, buffer_size, "<unknown!>");
}
void mpack_tag_debug_pseudo_json(mpack_tag_t tag, char* buffer, size_t buffer_size,
const char* prefix, size_t prefix_size)
{
mpack_assert(buffer_size > 0, "buffer size cannot be zero!");
buffer[0] = 0;
mpack_tag_debug_pseudo_json_impl(tag, buffer, buffer_size, prefix, prefix_size);
// We always null-terminate the buffer manually just in case the snprintf()
// function doesn't null-terminate when the string doesn't fit.
buffer[buffer_size - 1] = 0;
}
static void mpack_tag_debug_describe_impl(mpack_tag_t tag, char* buffer, size_t buffer_size) {
switch (tag.type) {
case mpack_type_missing:
mpack_snprintf(buffer, buffer_size, "missing");
return;
case mpack_type_nil:
mpack_snprintf(buffer, buffer_size, "nil");
return;
case mpack_type_bool:
mpack_snprintf(buffer, buffer_size, tag.v.b ? "true" : "false");
return;
case mpack_type_int:
mpack_snprintf(buffer, buffer_size, "int %" PRIi64, tag.v.i);
return;
case mpack_type_uint:
mpack_snprintf(buffer, buffer_size, "uint %" PRIu64, tag.v.u);
return;
case mpack_type_float:
mpack_snprintf(buffer, buffer_size, "float %f", tag.v.f);
return;
case mpack_type_double:
mpack_snprintf(buffer, buffer_size, "double %f", tag.v.d);
return;
case mpack_type_str:
mpack_snprintf(buffer, buffer_size, "str of %u bytes", tag.v.l);
return;
case mpack_type_bin:
mpack_snprintf(buffer, buffer_size, "bin of %u bytes", tag.v.l);
return;
#if MPACK_EXTENSIONS
case mpack_type_ext:
mpack_snprintf(buffer, buffer_size, "ext of type %i, %u bytes",
mpack_tag_ext_exttype(&tag), mpack_tag_ext_length(&tag));
return;
#endif
case mpack_type_array:
mpack_snprintf(buffer, buffer_size, "array of %u elements", tag.v.n);
return;
case mpack_type_map:
mpack_snprintf(buffer, buffer_size, "map of %u key-value pairs", tag.v.n);
return;
}
mpack_snprintf(buffer, buffer_size, "unknown!");
}
void mpack_tag_debug_describe(mpack_tag_t tag, char* buffer, size_t buffer_size) {
mpack_assert(buffer_size > 0, "buffer size cannot be zero!");
buffer[0] = 0;
mpack_tag_debug_describe_impl(tag, buffer, buffer_size);
// We always null-terminate the buffer manually just in case the snprintf()
// function doesn't null-terminate when the string doesn't fit.
buffer[buffer_size - 1] = 0;
}
#endif
#if MPACK_READ_TRACKING || MPACK_WRITE_TRACKING
#ifndef MPACK_TRACKING_INITIAL_CAPACITY
// seems like a reasonable number. we grow by doubling, and it only
// needs to be as long as the maximum depth of the message.
#define MPACK_TRACKING_INITIAL_CAPACITY 8
#endif
mpack_error_t mpack_track_init(mpack_track_t* track) {
track->count = 0;
track->capacity = MPACK_TRACKING_INITIAL_CAPACITY;
track->elements = (mpack_track_element_t*)MPACK_MALLOC(sizeof(mpack_track_element_t) * track->capacity);
if (track->elements == NULL)
return mpack_error_memory;
return mpack_ok;
}
mpack_error_t mpack_track_grow(mpack_track_t* track) {
mpack_assert(track->elements, "null track elements!");
mpack_assert(track->count == track->capacity, "incorrect growing?");
size_t new_capacity = track->capacity * 2;
mpack_track_element_t* new_elements = (mpack_track_element_t*)mpack_realloc(track->elements,
sizeof(mpack_track_element_t) * track->count, sizeof(mpack_track_element_t) * new_capacity);
if (new_elements == NULL)
return mpack_error_memory;
track->elements = new_elements;
track->capacity = new_capacity;
return mpack_ok;
}
mpack_error_t mpack_track_push(mpack_track_t* track, mpack_type_t type, uint64_t count) {
mpack_assert(track->elements, "null track elements!");
mpack_log("track pushing %s count %i\n", mpack_type_to_string(type), (int)count);
// maps have twice the number of elements (key/value pairs)
if (type == mpack_type_map)
count *= 2;
// grow if needed
if (track->count == track->capacity) {
mpack_error_t error = mpack_track_grow(track);
if (error != mpack_ok)
return error;
}
// insert new track
track->elements[track->count].type = type;
track->elements[track->count].left = count;
++track->count;
return mpack_ok;
}
mpack_error_t mpack_track_pop(mpack_track_t* track, mpack_type_t type) {
mpack_assert(track->elements, "null track elements!");
mpack_log("track popping %s\n", mpack_type_to_string(type));
if (track->count == 0) {
mpack_break("attempting to close a %s but nothing was opened!", mpack_type_to_string(type));
return mpack_error_bug;
}
mpack_track_element_t* element = &track->elements[track->count - 1];
if (element->type != type) {
mpack_break("attempting to close a %s but the open element is a %s!",
mpack_type_to_string(type), mpack_type_to_string(element->type));
return mpack_error_bug;
}
if (element->left != 0) {
mpack_break("attempting to close a %s but there are %" PRIu64 " %s left",
mpack_type_to_string(type), element->left,
(type == mpack_type_map || type == mpack_type_array) ? "elements" : "bytes");
return mpack_error_bug;
}
--track->count;
return mpack_ok;
}
mpack_error_t mpack_track_peek_element(mpack_track_t* track, bool read) {
MPACK_UNUSED(read);
mpack_assert(track->elements, "null track elements!");
// if there are no open elements, that's fine, we can read/write elements at will
if (track->count == 0)
return mpack_ok;
mpack_track_element_t* element = &track->elements[track->count - 1];
if (element->type != mpack_type_map && element->type != mpack_type_array) {
mpack_break("elements cannot be %s within an %s", read ? "read" : "written",
mpack_type_to_string(element->type));
return mpack_error_bug;
}
if (element->left == 0) {
mpack_break("too many elements %s for %s", read ? "read" : "written",
mpack_type_to_string(element->type));
return mpack_error_bug;
}
return mpack_ok;
}
mpack_error_t mpack_track_element(mpack_track_t* track, bool read) {
mpack_error_t error = mpack_track_peek_element(track, read);
if (track->count > 0 && error == mpack_ok)
--track->elements[track->count - 1].left;
return error;
}
mpack_error_t mpack_track_bytes(mpack_track_t* track, bool read, uint64_t count) {
MPACK_UNUSED(read);
mpack_assert(track->elements, "null track elements!");
if (track->count == 0) {
mpack_break("bytes cannot be %s with no open bin, str or ext", read ? "read" : "written");
return mpack_error_bug;
}
mpack_track_element_t* element = &track->elements[track->count - 1];
if (element->type == mpack_type_map || element->type == mpack_type_array) {
mpack_break("bytes cannot be %s within an %s", read ? "read" : "written",
mpack_type_to_string(element->type));
return mpack_error_bug;
}
if (element->left < count) {
mpack_break("too many bytes %s for %s", read ? "read" : "written",
mpack_type_to_string(element->type));
return mpack_error_bug;
}
element->left -= count;
return mpack_ok;
}
mpack_error_t mpack_track_str_bytes_all(mpack_track_t* track, bool read, uint64_t count) {
mpack_error_t error = mpack_track_bytes(track, read, count);
if (error != mpack_ok)
return error;
mpack_track_element_t* element = &track->elements[track->count - 1];
if (element->type != mpack_type_str) {
mpack_break("the open type must be a string, not a %s", mpack_type_to_string(element->type));
return mpack_error_bug;
}
if (element->left != 0) {
mpack_break("not all bytes were read; the wrong byte count was requested for a string read.");
return mpack_error_bug;
}
return mpack_ok;
}
mpack_error_t mpack_track_check_empty(mpack_track_t* track) {
if (track->count != 0) {
mpack_break("unclosed %s", mpack_type_to_string(track->elements[0].type));
return mpack_error_bug;
}
return mpack_ok;
}
mpack_error_t mpack_track_destroy(mpack_track_t* track, bool cancel) {
mpack_error_t error = cancel ? mpack_ok : mpack_track_check_empty(track);
if (track->elements) {
MPACK_FREE(track->elements);
track->elements = NULL;
}
return error;
}
#endif
static bool mpack_utf8_check_impl(const uint8_t* str, size_t count, bool allow_null) {
while (count > 0) {
uint8_t lead = str[0];
// NUL
if (!allow_null && lead == '\0') // we don't allow NUL bytes in MPack C-strings
return false;
// ASCII
if (lead <= 0x7F) {
++str;
--count;
// 2-byte sequence
} else if ((lead & 0xE0) == 0xC0) {
if (count < 2) // truncated sequence
return false;
uint8_t cont = str[1];
if ((cont & 0xC0) != 0x80) // not a continuation byte
return false;
str += 2;
count -= 2;
uint32_t z = ((uint32_t)(lead & ~0xE0) << 6) |
(uint32_t)(cont & ~0xC0);
if (z < 0x80) // overlong sequence
return false;
// 3-byte sequence
} else if ((lead & 0xF0) == 0xE0) {
if (count < 3) // truncated sequence
return false;
uint8_t cont1 = str[1];
if ((cont1 & 0xC0) != 0x80) // not a continuation byte
return false;
uint8_t cont2 = str[2];
if ((cont2 & 0xC0) != 0x80) // not a continuation byte
return false;
str += 3;
count -= 3;
uint32_t z = ((uint32_t)(lead & ~0xF0) << 12) |
((uint32_t)(cont1 & ~0xC0) << 6) |
(uint32_t)(cont2 & ~0xC0);
if (z < 0x800) // overlong sequence
return false;
if (z >= 0xD800 && z <= 0xDFFF) // surrogate
return false;
// 4-byte sequence
} else if ((lead & 0xF8) == 0xF0) {
if (count < 4) // truncated sequence
return false;
uint8_t cont1 = str[1];
if ((cont1 & 0xC0) != 0x80) // not a continuation byte
return false;
uint8_t cont2 = str[2];
if ((cont2 & 0xC0) != 0x80) // not a continuation byte
return false;
uint8_t cont3 = str[3];
if ((cont3 & 0xC0) != 0x80) // not a continuation byte
return false;
str += 4;
count -= 4;
uint32_t z = ((uint32_t)(lead & ~0xF8) << 18) |
((uint32_t)(cont1 & ~0xC0) << 12) |
((uint32_t)(cont2 & ~0xC0) << 6) |
(uint32_t)(cont3 & ~0xC0);
if (z < 0x10000) // overlong sequence
return false;
if (z > 0x10FFFF) // codepoint limit
return false;
} else {
return false; // continuation byte without a lead, or lead for a 5-byte sequence or longer
}
}
return true;
}
bool mpack_utf8_check(const char* str, size_t bytes) {
return mpack_utf8_check_impl((const uint8_t*)str, bytes, true);
}
bool mpack_utf8_check_no_null(const char* str, size_t bytes) {
return mpack_utf8_check_impl((const uint8_t*)str, bytes, false);
}
bool mpack_str_check_no_null(const char* str, size_t bytes) {
for (size_t i = 0; i < bytes; ++i)
if (str[i] == '\0')
return false;
return true;
}
#if MPACK_DEBUG && MPACK_STDIO
void mpack_print_append(mpack_print_t* print, const char* data, size_t count) {
// copy whatever fits into the buffer
size_t copy = print->size - print->count;
if (copy > count)
copy = count;
mpack_memcpy(print->buffer + print->count, data, copy);
print->count += copy;
data += copy;
count -= copy;
// if we don't need to flush or can't flush there's nothing else to do
if (count == 0 || print->callback == NULL)
return;
// flush the buffer
print->callback(print->context, print->buffer, print->count);
if (count > print->size / 2) {
// flush the rest of the data
print->count = 0;
print->callback(print->context, data, count);
} else {
// copy the rest of the data into the buffer
mpack_memcpy(print->buffer, data, count);
print->count = count;
}
}
void mpack_print_flush(mpack_print_t* print) {
if (print->count > 0 && print->callback != NULL) {
print->callback(print->context, print->buffer, print->count);
print->count = 0;
}
}
void mpack_print_file_callback(void* context, const char* data, size_t count) {
FILE* file = (FILE*)context;
fwrite(data, 1, count, file);
}
#endif
/* mpack/mpack-writer.c.c */
#define MPACK_INTERNAL 1
/* #include "mpack-writer.h" */
#if MPACK_WRITER
#if MPACK_WRITE_TRACKING
static void mpack_writer_flag_if_error(mpack_writer_t* writer, mpack_error_t error) {
if (error != mpack_ok)
mpack_writer_flag_error(writer, error);
}
void mpack_writer_track_push(mpack_writer_t* writer, mpack_type_t type, uint64_t count) {
if (writer->error == mpack_ok)
mpack_writer_flag_if_error(writer, mpack_track_push(&writer->track, type, count));
}
void mpack_writer_track_pop(mpack_writer_t* writer, mpack_type_t type) {
if (writer->error == mpack_ok)
mpack_writer_flag_if_error(writer, mpack_track_pop(&writer->track, type));
}
void mpack_writer_track_element(mpack_writer_t* writer) {
if (writer->error == mpack_ok)
mpack_writer_flag_if_error(writer, mpack_track_element(&writer->track, false));
}
void mpack_writer_track_bytes(mpack_writer_t* writer, size_t count) {
if (writer->error == mpack_ok)
mpack_writer_flag_if_error(writer, mpack_track_bytes(&writer->track, false, count));
}
#endif
static void mpack_writer_clear(mpack_writer_t* writer) {
#if MPACK_COMPATIBILITY
writer->version = mpack_version_current;
#endif
writer->flush = NULL;
writer->error_fn = NULL;
writer->teardown = NULL;
writer->context = NULL;
writer->buffer = NULL;
writer->current = NULL;
writer->end = NULL;
writer->error = mpack_ok;
#if MPACK_WRITE_TRACKING
mpack_memset(&writer->track, 0, sizeof(writer->track));
#endif
}
void mpack_writer_init(mpack_writer_t* writer, char* buffer, size_t size) {
mpack_assert(buffer != NULL, "cannot initialize writer with empty buffer");
mpack_writer_clear(writer);
writer->buffer = buffer;
writer->current = buffer;
writer->end = writer->buffer + size;
#if MPACK_WRITE_TRACKING
mpack_writer_flag_if_error(writer, mpack_track_init(&writer->track));
#endif
mpack_log("===========================\n");
mpack_log("initializing writer with buffer size %i\n", (int)size);
}
void mpack_writer_init_error(mpack_writer_t* writer, mpack_error_t error) {
mpack_writer_clear(writer);
writer->error = error;
mpack_log("===========================\n");
mpack_log("initializing writer in error state %i\n", (int)error);
}
void mpack_writer_set_flush(mpack_writer_t* writer, mpack_writer_flush_t flush) {
MPACK_STATIC_ASSERT(MPACK_WRITER_MINIMUM_BUFFER_SIZE >= MPACK_MAXIMUM_TAG_SIZE,
"minimum buffer size must fit any tag!");
MPACK_STATIC_ASSERT(31 + MPACK_TAG_SIZE_FIXSTR >= MPACK_WRITER_MINIMUM_BUFFER_SIZE,
"minimum buffer size must fit the largest possible fixstr!");
if (mpack_writer_buffer_size(writer) < MPACK_WRITER_MINIMUM_BUFFER_SIZE) {
mpack_break("buffer size is %i, but minimum buffer size for flush is %i",
(int)mpack_writer_buffer_size(writer), MPACK_WRITER_MINIMUM_BUFFER_SIZE);
mpack_writer_flag_error(writer, mpack_error_bug);
return;
}
writer->flush = flush;
}
#ifdef MPACK_MALLOC
typedef struct mpack_growable_writer_t {
char** target_data;
size_t* target_size;
} mpack_growable_writer_t;
static char* mpack_writer_get_reserved(mpack_writer_t* writer) {
// This is in a separate function in order to avoid false strict aliasing
// warnings. We aren't actually violating strict aliasing (the reserved
// space is only ever dereferenced as an mpack_growable_writer_t.)
return (char*)writer->reserved;
}
static void mpack_growable_writer_flush(mpack_writer_t* writer, const char* data, size_t count) {
// This is an intrusive flush function which modifies the writer's buffer
// in response to a flush instead of emptying it in order to add more
// capacity for data. This removes the need to copy data from a fixed buffer
// into a growable one, improving performance.
//
// There are three ways flush can be called:
// - flushing the buffer during writing (used is zero, count is all data, data is buffer)
// - flushing extra data during writing (used is all flushed data, count is extra data, data is not buffer)
// - flushing during teardown (used and count are both all flushed data, data is buffer)
//
// In the first two cases, we grow the buffer by at least double, enough
// to ensure that new data will fit. We ignore the teardown flush.
if (data == writer->buffer) {
// teardown, do nothing
if (mpack_writer_buffer_used(writer) == count)
return;
// otherwise leave the data in the buffer and just grow
writer->current = writer->buffer + count;
count = 0;
}
size_t used = mpack_writer_buffer_used(writer);
size_t size = mpack_writer_buffer_size(writer);
mpack_log("flush size %i used %i data %p buffer %p\n",
(int)count, (int)used, data, writer->buffer);
mpack_assert(data == writer->buffer || used + count > size,
"extra flush for %i but there is %i space left in the buffer! (%i/%i)",
(int)count, (int)mpack_writer_buffer_left(writer), (int)used, (int)size);
// grow to fit the data
// TODO: this really needs to correctly test for overflow
size_t new_size = size * 2;
while (new_size < used + count)
new_size *= 2;
mpack_log("flush growing buffer size from %i to %i\n", (int)size, (int)new_size);
// grow the buffer
char* new_buffer = (char*)mpack_realloc(writer->buffer, used, new_size);
if (new_buffer == NULL) {
mpack_writer_flag_error(writer, mpack_error_memory);
return;
}
writer->current = new_buffer + used;
writer->buffer = new_buffer;
writer->end = writer->buffer + new_size;
// append the extra data
if (count > 0) {
mpack_memcpy(writer->current, data, count);
writer->current += count;
}
mpack_log("new buffer %p, used %i\n", new_buffer, (int)mpack_writer_buffer_used(writer));
}
static void mpack_growable_writer_teardown(mpack_writer_t* writer) {
mpack_growable_writer_t* growable_writer = (mpack_growable_writer_t*)mpack_writer_get_reserved(writer);
if (mpack_writer_error(writer) == mpack_ok) {
// shrink the buffer to an appropriate size if the data is
// much smaller than the buffer
if (mpack_writer_buffer_used(writer) < mpack_writer_buffer_size(writer) / 2) {
size_t used = mpack_writer_buffer_used(writer);
// We always return a non-null pointer that must be freed, even if
// nothing was written. malloc() and realloc() do not necessarily
// do this so we enforce it ourselves.
size_t size = (used != 0) ? used : 1;
char* buffer = (char*)mpack_realloc(writer->buffer, used, size);
if (!buffer) {
MPACK_FREE(writer->buffer);
mpack_writer_flag_error(writer, mpack_error_memory);
return;
}
writer->buffer = buffer;
writer->end = (writer->current = writer->buffer + used);
}
*growable_writer->target_data = writer->buffer;
*growable_writer->target_size = mpack_writer_buffer_used(writer);
writer->buffer = NULL;
} else if (writer->buffer) {
MPACK_FREE(writer->buffer);
writer->buffer = NULL;
}
writer->context = NULL;
}
void mpack_writer_init_growable(mpack_writer_t* writer, char** target_data, size_t* target_size) {
mpack_assert(target_data != NULL, "cannot initialize writer without a destination for the data");
mpack_assert(target_size != NULL, "cannot initialize writer without a destination for the size");
*target_data = NULL;
*target_size = 0;
MPACK_STATIC_ASSERT(sizeof(mpack_growable_writer_t) <= sizeof(writer->reserved),
"not enough reserved space for growable writer!");
mpack_growable_writer_t* growable_writer = (mpack_growable_writer_t*)mpack_writer_get_reserved(writer);
growable_writer->target_data = target_data;
growable_writer->target_size = target_size;
size_t capacity = MPACK_BUFFER_SIZE;
char* buffer = (char*)MPACK_MALLOC(capacity);
if (buffer == NULL) {
mpack_writer_init_error(writer, mpack_error_memory);
return;
}
mpack_writer_init(writer, buffer, capacity);
mpack_writer_set_flush(writer, mpack_growable_writer_flush);
mpack_writer_set_teardown(writer, mpack_growable_writer_teardown);
}
#endif
#if MPACK_STDIO
static void mpack_file_writer_flush(mpack_writer_t* writer, const char* buffer, size_t count) {
FILE* file = (FILE*)writer->context;
size_t written = fwrite((const void*)buffer, 1, count, file);
if (written != count)
mpack_writer_flag_error(writer, mpack_error_io);
}
static void mpack_file_writer_teardown(mpack_writer_t* writer) {
MPACK_FREE(writer->buffer);
writer->buffer = NULL;
writer->context = NULL;
}
static void mpack_file_writer_teardown_close(mpack_writer_t* writer) {
FILE* file = (FILE*)writer->context;
if (file) {
int ret = fclose(file);
if (ret != 0)
mpack_writer_flag_error(writer, mpack_error_io);
}
mpack_file_writer_teardown(writer);
}
void mpack_writer_init_stdfile(mpack_writer_t* writer, FILE* file, bool close_when_done) {
mpack_assert(file != NULL, "file is NULL");
size_t capacity = MPACK_BUFFER_SIZE;
char* buffer = (char*)MPACK_MALLOC(capacity);
if (buffer == NULL) {
mpack_writer_init_error(writer, mpack_error_memory);
if (close_when_done) {
fclose(file);
}
return;
}
mpack_writer_init(writer, buffer, capacity);
mpack_writer_set_context(writer, file);
mpack_writer_set_flush(writer, mpack_file_writer_flush);
mpack_writer_set_teardown(writer, close_when_done ?
mpack_file_writer_teardown_close :
mpack_file_writer_teardown);
}
void mpack_writer_init_filename(mpack_writer_t* writer, const char* filename) {
mpack_assert(filename != NULL, "filename is NULL");
FILE* file = fopen(filename, "wb");
if (file == NULL) {
mpack_writer_init_error(writer, mpack_error_io);
return;
}
mpack_writer_init_stdfile(writer, file, true);
}
#endif
void mpack_writer_flag_error(mpack_writer_t* writer, mpack_error_t error) {
mpack_log("writer %p setting error %i: %s\n", writer, (int)error, mpack_error_to_string(error));
if (writer->error == mpack_ok) {
writer->error = error;
if (writer->error_fn)
writer->error_fn(writer, writer->error);
}
}
MPACK_STATIC_INLINE void mpack_writer_flush_unchecked(mpack_writer_t* writer) {
// This is a bit ugly; we reset used before calling flush so that
// a flush function can distinguish between flushing the buffer
// versus flushing external data. see mpack_growable_writer_flush()
size_t used = mpack_writer_buffer_used(writer);
writer->current = writer->buffer;
writer->flush(writer, writer->buffer, used);
}
void mpack_writer_flush_message(mpack_writer_t* writer) {
if (writer->error != mpack_ok)
return;
#if MPACK_WRITE_TRACKING
mpack_writer_flag_if_error(writer, mpack_track_check_empty(&writer->track));
if (writer->error != mpack_ok)
return;
#endif
if (writer->flush == NULL) {
mpack_break("cannot call mpack_writer_flush_message() without a flush function!");
mpack_writer_flag_error(writer, mpack_error_bug);
return;
}
if (mpack_writer_buffer_used(writer) > 0)
mpack_writer_flush_unchecked(writer);
}
// Ensures there are at least count bytes free in the buffer. This
// will flag an error if the flush function fails to make enough
// room in the buffer.
MPACK_NOINLINE static bool mpack_writer_ensure(mpack_writer_t* writer, size_t count) {
mpack_assert(count != 0, "cannot ensure zero bytes!");
mpack_assert(count <= MPACK_WRITER_MINIMUM_BUFFER_SIZE,
"cannot ensure %i bytes, this is more than the minimum buffer size %i!",
(int)count, (int)MPACK_WRITER_MINIMUM_BUFFER_SIZE);
mpack_assert(count > mpack_writer_buffer_left(writer),
"request to ensure %i bytes but there are already %i left in the buffer!",
(int)count, (int)mpack_writer_buffer_left(writer));
mpack_log("ensuring %i bytes, %i left\n", (int)count, (int)mpack_writer_buffer_left(writer));
if (mpack_writer_error(writer) != mpack_ok)
return false;
if (writer->flush == NULL) {
mpack_writer_flag_error(writer, mpack_error_too_big);
return false;
}
mpack_writer_flush_unchecked(writer);
if (mpack_writer_error(writer) != mpack_ok)
return false;
if (mpack_writer_buffer_left(writer) >= count)
return true;
mpack_writer_flag_error(writer, mpack_error_io);
return false;
}
// Writes encoded bytes to the buffer when we already know the data
// does not fit in the buffer (i.e. it straddles the edge of the
// buffer.) If there is a flush function, it is guaranteed to be
// called; otherwise mpack_error_too_big is raised.
MPACK_NOINLINE static void mpack_write_native_straddle(mpack_writer_t* writer, const char* p, size_t count) {
mpack_assert(count == 0 || p != NULL, "data pointer for %i bytes is NULL", (int)count);
if (mpack_writer_error(writer) != mpack_ok)
return;
mpack_log("big write for %i bytes from %p, %i space left in buffer\n",
(int)count, p, (int)mpack_writer_buffer_left(writer));
mpack_assert(count > mpack_writer_buffer_left(writer),
"big write requested for %i bytes, but there is %i available "
"space in buffer. should have called mpack_write_native() instead",
(int)count, (int)(mpack_writer_buffer_left(writer)));
// we'll need a flush function
if (!writer->flush) {
mpack_writer_flag_error(writer, mpack_error_too_big);
return;
}
// flush the buffer
mpack_writer_flush_unchecked(writer);
if (mpack_writer_error(writer) != mpack_ok)
return;
// note that an intrusive flush function (such as mpack_growable_writer_flush())
// may have changed size and/or reset used to a non-zero value. we treat both as
// though they may have changed, and there may still be data in the buffer.
// flush the extra data directly if it doesn't fit in the buffer
if (count > mpack_writer_buffer_left(writer)) {
writer->flush(writer, p, count);
if (mpack_writer_error(writer) != mpack_ok)
return;
} else {
mpack_memcpy(writer->current, p, count);
writer->current += count;
}
}
// Writes encoded bytes to the buffer, flushing if necessary.
MPACK_STATIC_INLINE void mpack_write_native(mpack_writer_t* writer, const char* p, size_t count) {
mpack_assert(count == 0 || p != NULL, "data pointer for %i bytes is NULL", (int)count);
if (mpack_writer_buffer_left(writer) < count) {
mpack_write_native_straddle(writer, p, count);
} else {
mpack_memcpy(writer->current, p, count);
writer->current += count;
}
}
mpack_error_t mpack_writer_destroy(mpack_writer_t* writer) {
// clean up tracking, asserting if we're not already in an error state
#if MPACK_WRITE_TRACKING
mpack_track_destroy(&writer->track, writer->error != mpack_ok);
#endif
// flush any outstanding data
if (mpack_writer_error(writer) == mpack_ok && mpack_writer_buffer_used(writer) != 0 && writer->flush != NULL) {
writer->flush(writer, writer->buffer, mpack_writer_buffer_used(writer));
writer->flush = NULL;
}
if (writer->teardown) {
writer->teardown(writer);
writer->teardown = NULL;
}
return writer->error;
}
void mpack_write_tag(mpack_writer_t* writer, mpack_tag_t value) {
switch (value.type) {
case mpack_type_missing:
mpack_break("cannot write a missing value!");
mpack_writer_flag_error(writer, mpack_error_bug);
return;
case mpack_type_nil: mpack_write_nil (writer); return;
case mpack_type_bool: mpack_write_bool (writer, value.v.b); return;
case mpack_type_float: mpack_write_float (writer, value.v.f); return;
case mpack_type_double: mpack_write_double(writer, value.v.d); return;
case mpack_type_int: mpack_write_int (writer, value.v.i); return;
case mpack_type_uint: mpack_write_uint (writer, value.v.u); return;
case mpack_type_str: mpack_start_str(writer, value.v.l); return;
case mpack_type_bin: mpack_start_bin(writer, value.v.l); return;
#if MPACK_EXTENSIONS
case mpack_type_ext:
mpack_start_ext(writer, mpack_tag_ext_exttype(&value), mpack_tag_ext_length(&value));
return;
#endif
case mpack_type_array: mpack_start_array(writer, value.v.n); return;
case mpack_type_map: mpack_start_map(writer, value.v.n); return;
}
mpack_break("unrecognized type %i", (int)value.type);
mpack_writer_flag_error(writer, mpack_error_bug);
}
MPACK_STATIC_INLINE void mpack_write_byte_element(mpack_writer_t* writer, char value) {
mpack_writer_track_element(writer);
if (MPACK_LIKELY(mpack_writer_buffer_left(writer) >= 1) || mpack_writer_ensure(writer, 1))
*(writer->current++) = value;
}
void mpack_write_nil(mpack_writer_t* writer) {
mpack_write_byte_element(writer, (char)0xc0);
}
void mpack_write_bool(mpack_writer_t* writer, bool value) {
mpack_write_byte_element(writer, (char)(0xc2 | (value ? 1 : 0)));
}
void mpack_write_true(mpack_writer_t* writer) {
mpack_write_byte_element(writer, (char)0xc3);
}
void mpack_write_false(mpack_writer_t* writer) {
mpack_write_byte_element(writer, (char)0xc2);
}
void mpack_write_object_bytes(mpack_writer_t* writer, const char* data, size_t bytes) {
mpack_writer_track_element(writer);
mpack_write_native(writer, data, bytes);
}
/*
* Encode functions
*/
MPACK_STATIC_INLINE void mpack_encode_fixuint(char* p, uint8_t value) {
mpack_assert(value <= 127);
mpack_store_u8(p, value);
}
MPACK_STATIC_INLINE void mpack_encode_u8(char* p, uint8_t value) {
mpack_assert(value > 127);
mpack_store_u8(p, 0xcc);
mpack_store_u8(p + 1, value);
}
MPACK_STATIC_INLINE void mpack_encode_u16(char* p, uint16_t value) {
mpack_assert(value > UINT8_MAX);
mpack_store_u8(p, 0xcd);
mpack_store_u16(p + 1, value);
}
MPACK_STATIC_INLINE void mpack_encode_u32(char* p, uint32_t value) {
mpack_assert(value > UINT16_MAX);
mpack_store_u8(p, 0xce);
mpack_store_u32(p + 1, value);
}
MPACK_STATIC_INLINE void mpack_encode_u64(char* p, uint64_t value) {
mpack_assert(value > UINT32_MAX);
mpack_store_u8(p, 0xcf);
mpack_store_u64(p + 1, value);
}
MPACK_STATIC_INLINE void mpack_encode_fixint(char* p, int8_t value) {
// this can encode positive or negative fixints
mpack_assert(value >= -32);
mpack_store_i8(p, value);
}
MPACK_STATIC_INLINE void mpack_encode_i8(char* p, int8_t value) {
mpack_assert(value < -32);
mpack_store_u8(p, 0xd0);
mpack_store_i8(p + 1, value);
}
MPACK_STATIC_INLINE void mpack_encode_i16(char* p, int16_t value) {
mpack_assert(value < INT8_MIN);
mpack_store_u8(p, 0xd1);
mpack_store_i16(p + 1, value);
}
MPACK_STATIC_INLINE void mpack_encode_i32(char* p, int32_t value) {
mpack_assert(value < INT16_MIN);
mpack_store_u8(p, 0xd2);
mpack_store_i32(p + 1, value);
}
MPACK_STATIC_INLINE void mpack_encode_i64(char* p, int64_t value) {
mpack_assert(value < INT32_MIN);
mpack_store_u8(p, 0xd3);
mpack_store_i64(p + 1, value);
}
MPACK_STATIC_INLINE void mpack_encode_float(char* p, float value) {
mpack_store_u8(p, 0xca);
mpack_store_float(p + 1, value);
}
MPACK_STATIC_INLINE void mpack_encode_double(char* p, double value) {
mpack_store_u8(p, 0xcb);
mpack_store_double(p + 1, value);
}
MPACK_STATIC_INLINE void mpack_encode_fixarray(char* p, uint8_t count) {
mpack_assert(count <= 15);
mpack_store_u8(p, (uint8_t)(0x90 | count));
}
MPACK_STATIC_INLINE void mpack_encode_array16(char* p, uint16_t count) {
mpack_assert(count > 15);
mpack_store_u8(p, 0xdc);
mpack_store_u16(p + 1, count);
}
MPACK_STATIC_INLINE void mpack_encode_array32(char* p, uint32_t count) {
mpack_assert(count > UINT16_MAX);
mpack_store_u8(p, 0xdd);
mpack_store_u32(p + 1, count);
}
MPACK_STATIC_INLINE void mpack_encode_fixmap(char* p, uint8_t count) {
mpack_assert(count <= 15);
mpack_store_u8(p, (uint8_t)(0x80 | count));
}
MPACK_STATIC_INLINE void mpack_encode_map16(char* p, uint16_t count) {
mpack_assert(count > 15);
mpack_store_u8(p, 0xde);
mpack_store_u16(p + 1, count);
}
MPACK_STATIC_INLINE void mpack_encode_map32(char* p, uint32_t count) {
mpack_assert(count > UINT16_MAX);
mpack_store_u8(p, 0xdf);
mpack_store_u32(p + 1, count);
}
MPACK_STATIC_INLINE void mpack_encode_fixstr(char* p, uint8_t count) {
mpack_assert(count <= 31);
mpack_store_u8(p, (uint8_t)(0xa0 | count));
}
MPACK_STATIC_INLINE void mpack_encode_str8(char* p, uint8_t count) {
mpack_assert(count > 31);
mpack_store_u8(p, 0xd9);
mpack_store_u8(p + 1, count);
}
MPACK_STATIC_INLINE void mpack_encode_str16(char* p, uint16_t count) {
// we might be encoding a raw in compatibility mode, so we
// allow count to be in the range [32, UINT8_MAX].
mpack_assert(count > 31);
mpack_store_u8(p, 0xda);
mpack_store_u16(p + 1, count);
}
MPACK_STATIC_INLINE void mpack_encode_str32(char* p, uint32_t count) {
mpack_assert(count > UINT16_MAX);
mpack_store_u8(p, 0xdb);
mpack_store_u32(p + 1, count);
}
MPACK_STATIC_INLINE void mpack_encode_bin8(char* p, uint8_t count) {
mpack_store_u8(p, 0xc4);
mpack_store_u8(p + 1, count);
}
MPACK_STATIC_INLINE void mpack_encode_bin16(char* p, uint16_t count) {
mpack_assert(count > UINT8_MAX);
mpack_store_u8(p, 0xc5);
mpack_store_u16(p + 1, count);
}
MPACK_STATIC_INLINE void mpack_encode_bin32(char* p, uint32_t count) {
mpack_assert(count > UINT16_MAX);
mpack_store_u8(p, 0xc6);
mpack_store_u32(p + 1, count);
}
#if MPACK_EXTENSIONS
MPACK_STATIC_INLINE void mpack_encode_fixext1(char* p, int8_t exttype) {
mpack_store_u8(p, 0xd4);
mpack_store_i8(p + 1, exttype);
}
MPACK_STATIC_INLINE void mpack_encode_fixext2(char* p, int8_t exttype) {
mpack_store_u8(p, 0xd5);
mpack_store_i8(p + 1, exttype);
}
MPACK_STATIC_INLINE void mpack_encode_fixext4(char* p, int8_t exttype) {
mpack_store_u8(p, 0xd6);
mpack_store_i8(p + 1, exttype);
}
MPACK_STATIC_INLINE void mpack_encode_fixext8(char* p, int8_t exttype) {
mpack_store_u8(p, 0xd7);
mpack_store_i8(p + 1, exttype);
}
MPACK_STATIC_INLINE void mpack_encode_fixext16(char* p, int8_t exttype) {
mpack_store_u8(p, 0xd8);
mpack_store_i8(p + 1, exttype);
}
MPACK_STATIC_INLINE void mpack_encode_ext8(char* p, int8_t exttype, uint8_t count) {
mpack_assert(count != 1 && count != 2 && count != 4 && count != 8 && count != 16);
mpack_store_u8(p, 0xc7);
mpack_store_u8(p + 1, count);
mpack_store_i8(p + 2, exttype);
}
MPACK_STATIC_INLINE void mpack_encode_ext16(char* p, int8_t exttype, uint16_t count) {
mpack_assert(count > UINT8_MAX);
mpack_store_u8(p, 0xc8);
mpack_store_u16(p + 1, count);
mpack_store_i8(p + 3, exttype);
}
MPACK_STATIC_INLINE void mpack_encode_ext32(char* p, int8_t exttype, uint32_t count) {
mpack_assert(count > UINT16_MAX);
mpack_store_u8(p, 0xc9);
mpack_store_u32(p + 1, count);
mpack_store_i8(p + 5, exttype);
}
MPACK_STATIC_INLINE void mpack_encode_timestamp_4(char* p, uint32_t seconds) {
mpack_encode_fixext4(p, MPACK_EXTTYPE_TIMESTAMP);
mpack_store_u32(p + MPACK_TAG_SIZE_FIXEXT4, seconds);
}
MPACK_STATIC_INLINE void mpack_encode_timestamp_8(char* p, int64_t seconds, uint32_t nanoseconds) {
mpack_assert(nanoseconds <= MPACK_TIMESTAMP_NANOSECONDS_MAX);
mpack_encode_fixext8(p, MPACK_EXTTYPE_TIMESTAMP);
uint64_t encoded = ((uint64_t)nanoseconds << 34) | (uint64_t)seconds;
mpack_store_u64(p + MPACK_TAG_SIZE_FIXEXT8, encoded);
}
MPACK_STATIC_INLINE void mpack_encode_timestamp_12(char* p, int64_t seconds, uint32_t nanoseconds) {
mpack_assert(nanoseconds <= MPACK_TIMESTAMP_NANOSECONDS_MAX);
mpack_encode_ext8(p, MPACK_EXTTYPE_TIMESTAMP, 12);
mpack_store_u32(p + MPACK_TAG_SIZE_EXT8, nanoseconds);
mpack_store_i64(p + MPACK_TAG_SIZE_EXT8 + 4, seconds);
}
#endif
/*
* Write functions
*/
// This is a macro wrapper to the encode functions to encode
// directly into the buffer. If mpack_writer_ensure() fails
// it will flag an error so we don't have to do anything.
#define MPACK_WRITE_ENCODED(encode_fn, size, ...) do { \
if (MPACK_LIKELY(mpack_writer_buffer_left(writer) >= size) || mpack_writer_ensure(writer, size)) { \
MPACK_EXPAND(encode_fn(writer->current, __VA_ARGS__)); \
writer->current += size; \
} \
} while (0)
void mpack_write_u8(mpack_writer_t* writer, uint8_t value) {
#if MPACK_OPTIMIZE_FOR_SIZE
mpack_write_u64(writer, value);
#else
mpack_writer_track_element(writer);
if (value <= 127) {
MPACK_WRITE_ENCODED(mpack_encode_fixuint, MPACK_TAG_SIZE_FIXUINT, value);
} else {
MPACK_WRITE_ENCODED(mpack_encode_u8, MPACK_TAG_SIZE_U8, value);
}
#endif
}
void mpack_write_u16(mpack_writer_t* writer, uint16_t value) {
#if MPACK_OPTIMIZE_FOR_SIZE
mpack_write_u64(writer, value);
#else
mpack_writer_track_element(writer);
if (value <= 127) {
MPACK_WRITE_ENCODED(mpack_encode_fixuint, MPACK_TAG_SIZE_FIXUINT, (uint8_t)value);
} else if (value <= UINT8_MAX) {
MPACK_WRITE_ENCODED(mpack_encode_u8, MPACK_TAG_SIZE_U8, (uint8_t)value);
} else {
MPACK_WRITE_ENCODED(mpack_encode_u16, MPACK_TAG_SIZE_U16, value);
}
#endif
}
void mpack_write_u32(mpack_writer_t* writer, uint32_t value) {
#if MPACK_OPTIMIZE_FOR_SIZE
mpack_write_u64(writer, value);
#else
mpack_writer_track_element(writer);
if (value <= 127) {
MPACK_WRITE_ENCODED(mpack_encode_fixuint, MPACK_TAG_SIZE_FIXUINT, (uint8_t)value);
} else if (value <= UINT8_MAX) {
MPACK_WRITE_ENCODED(mpack_encode_u8, MPACK_TAG_SIZE_U8, (uint8_t)value);
} else if (value <= UINT16_MAX) {
MPACK_WRITE_ENCODED(mpack_encode_u16, MPACK_TAG_SIZE_U16, (uint16_t)value);
} else {
MPACK_WRITE_ENCODED(mpack_encode_u32, MPACK_TAG_SIZE_U32, value);
}
#endif
}
void mpack_write_u64(mpack_writer_t* writer, uint64_t value) {
mpack_writer_track_element(writer);
if (value <= 127) {
MPACK_WRITE_ENCODED(mpack_encode_fixuint, MPACK_TAG_SIZE_FIXUINT, (uint8_t)value);
} else if (value <= UINT8_MAX) {
MPACK_WRITE_ENCODED(mpack_encode_u8, MPACK_TAG_SIZE_U8, (uint8_t)value);
} else if (value <= UINT16_MAX) {
MPACK_WRITE_ENCODED(mpack_encode_u16, MPACK_TAG_SIZE_U16, (uint16_t)value);
} else if (value <= UINT32_MAX) {
MPACK_WRITE_ENCODED(mpack_encode_u32, MPACK_TAG_SIZE_U32, (uint32_t)value);
} else {
MPACK_WRITE_ENCODED(mpack_encode_u64, MPACK_TAG_SIZE_U64, value);
}
}
void mpack_write_i8(mpack_writer_t* writer, int8_t value) {
#if MPACK_OPTIMIZE_FOR_SIZE
mpack_write_i64(writer, value);
#else
mpack_writer_track_element(writer);
if (value >= -32) {
// we encode positive and negative fixints together
MPACK_WRITE_ENCODED(mpack_encode_fixint, MPACK_TAG_SIZE_FIXINT, (int8_t)value);
} else {
MPACK_WRITE_ENCODED(mpack_encode_i8, MPACK_TAG_SIZE_I8, (int8_t)value);
}
#endif
}
void mpack_write_i16(mpack_writer_t* writer, int16_t value) {
#if MPACK_OPTIMIZE_FOR_SIZE
mpack_write_i64(writer, value);
#else
mpack_writer_track_element(writer);
if (value >= -32) {
if (value <= 127) {
// we encode positive and negative fixints together
MPACK_WRITE_ENCODED(mpack_encode_fixint, MPACK_TAG_SIZE_FIXINT, (int8_t)value);
} else if (value <= UINT8_MAX) {
MPACK_WRITE_ENCODED(mpack_encode_u8, MPACK_TAG_SIZE_U8, (uint8_t)value);
} else {
MPACK_WRITE_ENCODED(mpack_encode_u16, MPACK_TAG_SIZE_U16, (uint16_t)value);
}
} else if (value >= INT8_MIN) {
MPACK_WRITE_ENCODED(mpack_encode_i8, MPACK_TAG_SIZE_I8, (int8_t)value);
} else {
MPACK_WRITE_ENCODED(mpack_encode_i16, MPACK_TAG_SIZE_I16, (int16_t)value);
}
#endif
}
void mpack_write_i32(mpack_writer_t* writer, int32_t value) {
#if MPACK_OPTIMIZE_FOR_SIZE
mpack_write_i64(writer, value);
#else
mpack_writer_track_element(writer);
if (value >= -32) {
if (value <= 127) {
// we encode positive and negative fixints together
MPACK_WRITE_ENCODED(mpack_encode_fixint, MPACK_TAG_SIZE_FIXINT, (int8_t)value);
} else if (value <= UINT8_MAX) {
MPACK_WRITE_ENCODED(mpack_encode_u8, MPACK_TAG_SIZE_U8, (uint8_t)value);
} else if (value <= UINT16_MAX) {
MPACK_WRITE_ENCODED(mpack_encode_u16, MPACK_TAG_SIZE_U16, (uint16_t)value);
} else {
MPACK_WRITE_ENCODED(mpack_encode_u32, MPACK_TAG_SIZE_U32, (uint32_t)value);
}
} else if (value >= INT8_MIN) {
MPACK_WRITE_ENCODED(mpack_encode_i8, MPACK_TAG_SIZE_I8, (int8_t)value);
} else if (value >= INT16_MIN) {
MPACK_WRITE_ENCODED(mpack_encode_i16, MPACK_TAG_SIZE_I16, (int16_t)value);
} else {
MPACK_WRITE_ENCODED(mpack_encode_i32, MPACK_TAG_SIZE_I32, value);
}
#endif
}
void mpack_write_i64(mpack_writer_t* writer, int64_t value) {
#if MPACK_OPTIMIZE_FOR_SIZE
if (value > 127) {
// for non-fix positive ints we call the u64 writer to save space
mpack_write_u64(writer, (uint64_t)value);
return;
}
#endif
mpack_writer_track_element(writer);
if (value >= -32) {
#if MPACK_OPTIMIZE_FOR_SIZE
MPACK_WRITE_ENCODED(mpack_encode_fixint, MPACK_TAG_SIZE_FIXINT, (int8_t)value);
#else
if (value <= 127) {
MPACK_WRITE_ENCODED(mpack_encode_fixint, MPACK_TAG_SIZE_FIXINT, (int8_t)value);
} else if (value <= UINT8_MAX) {
MPACK_WRITE_ENCODED(mpack_encode_u8, MPACK_TAG_SIZE_U8, (uint8_t)value);
} else if (value <= UINT16_MAX) {
MPACK_WRITE_ENCODED(mpack_encode_u16, MPACK_TAG_SIZE_U16, (uint16_t)value);
} else if (value <= UINT32_MAX) {
MPACK_WRITE_ENCODED(mpack_encode_u32, MPACK_TAG_SIZE_U32, (uint32_t)value);
} else {
MPACK_WRITE_ENCODED(mpack_encode_u64, MPACK_TAG_SIZE_U64, (uint64_t)value);
}
#endif
} else if (value >= INT8_MIN) {
MPACK_WRITE_ENCODED(mpack_encode_i8, MPACK_TAG_SIZE_I8, (int8_t)value);
} else if (value >= INT16_MIN) {
MPACK_WRITE_ENCODED(mpack_encode_i16, MPACK_TAG_SIZE_I16, (int16_t)value);
} else if (value >= INT32_MIN) {
MPACK_WRITE_ENCODED(mpack_encode_i32, MPACK_TAG_SIZE_I32, (int32_t)value);
} else {
MPACK_WRITE_ENCODED(mpack_encode_i64, MPACK_TAG_SIZE_I64, value);
}
}
void mpack_write_float(mpack_writer_t* writer, float value) {
mpack_writer_track_element(writer);
MPACK_WRITE_ENCODED(mpack_encode_float, MPACK_TAG_SIZE_FLOAT, value);
}
void mpack_write_double(mpack_writer_t* writer, double value) {
mpack_writer_track_element(writer);
MPACK_WRITE_ENCODED(mpack_encode_double, MPACK_TAG_SIZE_DOUBLE, value);
}
#if MPACK_EXTENSIONS
void mpack_write_timestamp(mpack_writer_t* writer, int64_t seconds, uint32_t nanoseconds) {
#if MPACK_COMPATIBILITY
if (writer->version <= mpack_version_v4) {
mpack_break("Timestamps require spec version v5 or later. This writer is in v%i mode.", (int)writer->version);
mpack_writer_flag_error(writer, mpack_error_bug);
return;
}
#endif
if (nanoseconds > MPACK_TIMESTAMP_NANOSECONDS_MAX) {
mpack_break("timestamp nanoseconds out of bounds: %u", nanoseconds);
mpack_writer_flag_error(writer, mpack_error_bug);
return;
}
mpack_writer_track_element(writer);
if (seconds < 0 || seconds >= (INT64_C(1) << 34)) {
MPACK_WRITE_ENCODED(mpack_encode_timestamp_12, MPACK_EXT_SIZE_TIMESTAMP12, seconds, nanoseconds);
} else if (seconds > UINT32_MAX || nanoseconds > 0) {
MPACK_WRITE_ENCODED(mpack_encode_timestamp_8, MPACK_EXT_SIZE_TIMESTAMP8, seconds, nanoseconds);
} else {
MPACK_WRITE_ENCODED(mpack_encode_timestamp_4, MPACK_EXT_SIZE_TIMESTAMP4, (uint32_t)seconds);
}
}
#endif
void mpack_start_array(mpack_writer_t* writer, uint32_t count) {
mpack_writer_track_element(writer);
if (count <= 15) {
MPACK_WRITE_ENCODED(mpack_encode_fixarray, MPACK_TAG_SIZE_FIXARRAY, (uint8_t)count);
} else if (count <= UINT16_MAX) {
MPACK_WRITE_ENCODED(mpack_encode_array16, MPACK_TAG_SIZE_ARRAY16, (uint16_t)count);
} else {
MPACK_WRITE_ENCODED(mpack_encode_array32, MPACK_TAG_SIZE_ARRAY32, (uint32_t)count);
}
mpack_writer_track_push(writer, mpack_type_array, count);
}
void mpack_start_map(mpack_writer_t* writer, uint32_t count) {
mpack_writer_track_element(writer);
if (count <= 15) {
MPACK_WRITE_ENCODED(mpack_encode_fixmap, MPACK_TAG_SIZE_FIXMAP, (uint8_t)count);
} else if (count <= UINT16_MAX) {
MPACK_WRITE_ENCODED(mpack_encode_map16, MPACK_TAG_SIZE_MAP16, (uint16_t)count);
} else {
MPACK_WRITE_ENCODED(mpack_encode_map32, MPACK_TAG_SIZE_MAP32, (uint32_t)count);
}
mpack_writer_track_push(writer, mpack_type_map, count);
}
static void mpack_start_str_notrack(mpack_writer_t* writer, uint32_t count) {
if (count <= 31) {
MPACK_WRITE_ENCODED(mpack_encode_fixstr, MPACK_TAG_SIZE_FIXSTR, (uint8_t)count);
// str8 is only supported in v5 or later.
} else if (count <= UINT8_MAX
#if MPACK_COMPATIBILITY
&& writer->version >= mpack_version_v5
#endif
) {
MPACK_WRITE_ENCODED(mpack_encode_str8, MPACK_TAG_SIZE_STR8, (uint8_t)count);
} else if (count <= UINT16_MAX) {
MPACK_WRITE_ENCODED(mpack_encode_str16, MPACK_TAG_SIZE_STR16, (uint16_t)count);
} else {
MPACK_WRITE_ENCODED(mpack_encode_str32, MPACK_TAG_SIZE_STR32, (uint32_t)count);
}
}
static void mpack_start_bin_notrack(mpack_writer_t* writer, uint32_t count) {
#if MPACK_COMPATIBILITY
// In the v4 spec, there was only the raw type for any kind of
// variable-length data. In v4 mode, we support the bin functions,
// but we produce an old-style raw.
if (writer->version <= mpack_version_v4) {
mpack_start_str_notrack(writer, count);
return;
}
#endif
if (count <= UINT8_MAX) {
MPACK_WRITE_ENCODED(mpack_encode_bin8, MPACK_TAG_SIZE_BIN8, (uint8_t)count);
} else if (count <= UINT16_MAX) {
MPACK_WRITE_ENCODED(mpack_encode_bin16, MPACK_TAG_SIZE_BIN16, (uint16_t)count);
} else {
MPACK_WRITE_ENCODED(mpack_encode_bin32, MPACK_TAG_SIZE_BIN32, (uint32_t)count);
}
}
void mpack_start_str(mpack_writer_t* writer, uint32_t count) {
mpack_writer_track_element(writer);
mpack_start_str_notrack(writer, count);
mpack_writer_track_push(writer, mpack_type_str, count);
}
void mpack_start_bin(mpack_writer_t* writer, uint32_t count) {
mpack_writer_track_element(writer);
mpack_start_bin_notrack(writer, count);
mpack_writer_track_push(writer, mpack_type_bin, count);
}
#if MPACK_EXTENSIONS
void mpack_start_ext(mpack_writer_t* writer, int8_t exttype, uint32_t count) {
#if MPACK_COMPATIBILITY
if (writer->version <= mpack_version_v4) {
mpack_break("Ext types require spec version v5 or later. This writer is in v%i mode.", (int)writer->version);
mpack_writer_flag_error(writer, mpack_error_bug);
return;
}
#endif
mpack_writer_track_element(writer);
if (count == 1) {
MPACK_WRITE_ENCODED(mpack_encode_fixext1, MPACK_TAG_SIZE_FIXEXT1, exttype);
} else if (count == 2) {
MPACK_WRITE_ENCODED(mpack_encode_fixext2, MPACK_TAG_SIZE_FIXEXT2, exttype);
} else if (count == 4) {
MPACK_WRITE_ENCODED(mpack_encode_fixext4, MPACK_TAG_SIZE_FIXEXT4, exttype);
} else if (count == 8) {
MPACK_WRITE_ENCODED(mpack_encode_fixext8, MPACK_TAG_SIZE_FIXEXT8, exttype);
} else if (count == 16) {
MPACK_WRITE_ENCODED(mpack_encode_fixext16, MPACK_TAG_SIZE_FIXEXT16, exttype);
} else if (count <= UINT8_MAX) {
MPACK_WRITE_ENCODED(mpack_encode_ext8, MPACK_TAG_SIZE_EXT8, exttype, (uint8_t)count);
} else if (count <= UINT16_MAX) {
MPACK_WRITE_ENCODED(mpack_encode_ext16, MPACK_TAG_SIZE_EXT16, exttype, (uint16_t)count);
} else {
MPACK_WRITE_ENCODED(mpack_encode_ext32, MPACK_TAG_SIZE_EXT32, exttype, (uint32_t)count);
}
mpack_writer_track_push(writer, mpack_type_ext, count);
}
#endif
/*
* Compound helpers and other functions
*/
void mpack_write_str(mpack_writer_t* writer, const char* data, uint32_t count) {
mpack_assert(data != NULL, "data for string of length %i is NULL", (int)count);
#if MPACK_OPTIMIZE_FOR_SIZE
mpack_writer_track_element(writer);
mpack_start_str_notrack(writer, count);
mpack_write_native(writer, data, count);
#else
mpack_writer_track_element(writer);
if (count <= 31) {
// The minimum buffer size when using a flush function is guaranteed to
// fit the largest possible fixstr.
size_t size = count + MPACK_TAG_SIZE_FIXSTR;
if (MPACK_LIKELY(mpack_writer_buffer_left(writer) >= size) || mpack_writer_ensure(writer, size)) {
char* MPACK_RESTRICT p = writer->current;
mpack_encode_fixstr(p, (uint8_t)count);
mpack_memcpy(p + MPACK_TAG_SIZE_FIXSTR, data, count);
writer->current += count + MPACK_TAG_SIZE_FIXSTR;
}
return;
}
if (count <= UINT8_MAX
#if MPACK_COMPATIBILITY
&& writer->version >= mpack_version_v5
#endif
) {
if (count + MPACK_TAG_SIZE_STR8 <= mpack_writer_buffer_left(writer)) {
char* MPACK_RESTRICT p = writer->current;
mpack_encode_str8(p, (uint8_t)count);
mpack_memcpy(p + MPACK_TAG_SIZE_STR8, data, count);
writer->current += count + MPACK_TAG_SIZE_STR8;
} else {
MPACK_WRITE_ENCODED(mpack_encode_str8, MPACK_TAG_SIZE_STR8, (uint8_t)count);
mpack_write_native(writer, data, count);
}
return;
}
// str16 and str32 are likely to be a significant fraction of the buffer
// size, so we don't bother with a combined space check in order to
// minimize code size.
if (count <= UINT16_MAX) {
MPACK_WRITE_ENCODED(mpack_encode_str16, MPACK_TAG_SIZE_STR16, (uint16_t)count);
mpack_write_native(writer, data, count);
} else {
MPACK_WRITE_ENCODED(mpack_encode_str32, MPACK_TAG_SIZE_STR32, (uint32_t)count);
mpack_write_native(writer, data, count);
}
#endif
}
void mpack_write_bin(mpack_writer_t* writer, const char* data, uint32_t count) {
mpack_assert(data != NULL, "data pointer for bin of %i bytes is NULL", (int)count);
mpack_start_bin(writer, count);
mpack_write_bytes(writer, data, count);
mpack_finish_bin(writer);
}
#if MPACK_EXTENSIONS
void mpack_write_ext(mpack_writer_t* writer, int8_t exttype, const char* data, uint32_t count) {
mpack_assert(data != NULL, "data pointer for ext of type %i and %i bytes is NULL", exttype, (int)count);
mpack_start_ext(writer, exttype, count);
mpack_write_bytes(writer, data, count);
mpack_finish_ext(writer);
}
#endif
void mpack_write_bytes(mpack_writer_t* writer, const char* data, size_t count) {
mpack_assert(data != NULL, "data pointer for %i bytes is NULL", (int)count);
mpack_writer_track_bytes(writer, count);
mpack_write_native(writer, data, count);
}
void mpack_write_cstr(mpack_writer_t* writer, const char* cstr) {
mpack_assert(cstr != NULL, "cstr pointer is NULL");
size_t length = mpack_strlen(cstr);
if (length > UINT32_MAX)
mpack_writer_flag_error(writer, mpack_error_invalid);
mpack_write_str(writer, cstr, (uint32_t)length);
}
void mpack_write_cstr_or_nil(mpack_writer_t* writer, const char* cstr) {
if (cstr)
mpack_write_cstr(writer, cstr);
else
mpack_write_nil(writer);
}
void mpack_write_utf8(mpack_writer_t* writer, const char* str, uint32_t length) {
mpack_assert(str != NULL, "data for string of length %i is NULL", (int)length);
if (!mpack_utf8_check(str, length)) {
mpack_writer_flag_error(writer, mpack_error_invalid);
return;
}
mpack_write_str(writer, str, length);
}
void mpack_write_utf8_cstr(mpack_writer_t* writer, const char* cstr) {
mpack_assert(cstr != NULL, "cstr pointer is NULL");
size_t length = mpack_strlen(cstr);
if (length > UINT32_MAX) {
mpack_writer_flag_error(writer, mpack_error_invalid);
return;
}
mpack_write_utf8(writer, cstr, (uint32_t)length);
}
void mpack_write_utf8_cstr_or_nil(mpack_writer_t* writer, const char* cstr) {
if (cstr)
mpack_write_utf8_cstr(writer, cstr);
else
mpack_write_nil(writer);
}
#endif
/* mpack/mpack-reader.c.c */
#define MPACK_INTERNAL 1
/* #include "mpack-reader.h" */
#if MPACK_READER
static void mpack_reader_skip_using_fill(mpack_reader_t* reader, size_t count);
void mpack_reader_init(mpack_reader_t* reader, char* buffer, size_t size, size_t count) {
mpack_assert(buffer != NULL, "buffer is NULL");
mpack_memset(reader, 0, sizeof(*reader));
reader->buffer = buffer;
reader->size = size;
reader->data = buffer;
reader->end = buffer + count;
#if MPACK_READ_TRACKING
mpack_reader_flag_if_error(reader, mpack_track_init(&reader->track));
#endif
mpack_log("===========================\n");
mpack_log("initializing reader with buffer size %i\n", (int)size);
}
void mpack_reader_init_error(mpack_reader_t* reader, mpack_error_t error) {
mpack_memset(reader, 0, sizeof(*reader));
reader->error = error;
mpack_log("===========================\n");
mpack_log("initializing reader error state %i\n", (int)error);
}
void mpack_reader_init_data(mpack_reader_t* reader, const char* data, size_t count) {
mpack_assert(data != NULL, "data is NULL");
mpack_memset(reader, 0, sizeof(*reader));
reader->data = data;
reader->end = data + count;
#if MPACK_READ_TRACKING
mpack_reader_flag_if_error(reader, mpack_track_init(&reader->track));
#endif
mpack_log("===========================\n");
mpack_log("initializing reader with data size %i\n", (int)count);
}
void mpack_reader_set_fill(mpack_reader_t* reader, mpack_reader_fill_t fill) {
MPACK_STATIC_ASSERT(MPACK_READER_MINIMUM_BUFFER_SIZE >= MPACK_MAXIMUM_TAG_SIZE,
"minimum buffer size must fit any tag!");
if (reader->size == 0) {
mpack_break("cannot use fill function without a writeable buffer!");
mpack_reader_flag_error(reader, mpack_error_bug);
return;
}
if (reader->size < MPACK_READER_MINIMUM_BUFFER_SIZE) {
mpack_break("buffer size is %i, but minimum buffer size for fill is %i",
(int)reader->size, MPACK_READER_MINIMUM_BUFFER_SIZE);
mpack_reader_flag_error(reader, mpack_error_bug);
return;
}
reader->fill = fill;
}
void mpack_reader_set_skip(mpack_reader_t* reader, mpack_reader_skip_t skip) {
mpack_assert(reader->size != 0, "cannot use skip function without a writeable buffer!");
reader->skip = skip;
}
#if MPACK_STDIO
static size_t mpack_file_reader_fill(mpack_reader_t* reader, char* buffer, size_t count) {
if (feof((FILE *)reader->context)) {
mpack_reader_flag_error(reader, mpack_error_eof);
return 0;
}
return fread((void*)buffer, 1, count, (FILE*)reader->context);
}
static void mpack_file_reader_skip(mpack_reader_t* reader, size_t count) {
if (mpack_reader_error(reader) != mpack_ok)
return;
FILE* file = (FILE*)reader->context;
// We call ftell() to test whether the stream is seekable
// without causing a file error.
if (ftell(file) >= 0) {
mpack_log("seeking forward %i bytes\n", (int)count);
if (fseek(file, (long int)count, SEEK_CUR) == 0)
return;
mpack_log("fseek() didn't return zero!\n");
if (ferror(file)) {
mpack_reader_flag_error(reader, mpack_error_io);
return;
}
}
// If the stream is not seekable, fall back to the fill function.
mpack_reader_skip_using_fill(reader, count);
}
static void mpack_file_reader_teardown(mpack_reader_t* reader) {
MPACK_FREE(reader->buffer);
reader->buffer = NULL;
reader->context = NULL;
reader->size = 0;
reader->fill = NULL;
reader->skip = NULL;
reader->teardown = NULL;
}
static void mpack_file_reader_teardown_close(mpack_reader_t* reader) {
FILE* file = (FILE*)reader->context;
if (file) {
int ret = fclose(file);
if (ret != 0)
mpack_reader_flag_error(reader, mpack_error_io);
}
mpack_file_reader_teardown(reader);
}
void mpack_reader_init_stdfile(mpack_reader_t* reader, FILE* file, bool close_when_done) {
mpack_assert(file != NULL, "file is NULL");
size_t capacity = MPACK_BUFFER_SIZE;
char* buffer = (char*)MPACK_MALLOC(capacity);
if (buffer == NULL) {
mpack_reader_init_error(reader, mpack_error_memory);
if (close_when_done) {
fclose(file);
}
return;
}
mpack_reader_init(reader, buffer, capacity, 0);
mpack_reader_set_context(reader, file);
mpack_reader_set_fill(reader, mpack_file_reader_fill);
mpack_reader_set_skip(reader, mpack_file_reader_skip);
mpack_reader_set_teardown(reader, close_when_done ?
mpack_file_reader_teardown_close :
mpack_file_reader_teardown);
}
void mpack_reader_init_filename(mpack_reader_t* reader, const char* filename) {
mpack_assert(filename != NULL, "filename is NULL");
FILE* file = fopen(filename, "rb");
if (file == NULL) {
mpack_reader_init_error(reader, mpack_error_io);
return;
}
mpack_reader_init_stdfile(reader, file, true);
}
#endif
mpack_error_t mpack_reader_destroy(mpack_reader_t* reader) {
// clean up tracking, asserting if we're not already in an error state
#if MPACK_READ_TRACKING
mpack_reader_flag_if_error(reader, mpack_track_destroy(&reader->track, mpack_reader_error(reader) != mpack_ok));
#endif
if (reader->teardown)
reader->teardown(reader);
reader->teardown = NULL;
return reader->error;
}
size_t mpack_reader_remaining(mpack_reader_t* reader, const char** data) {
if (mpack_reader_error(reader) != mpack_ok)
return 0;
#if MPACK_READ_TRACKING
if (mpack_reader_flag_if_error(reader, mpack_track_check_empty(&reader->track)) != mpack_ok)
return 0;
#endif
if (data)
*data = reader->data;
return (size_t)(reader->end - reader->data);
}
void mpack_reader_flag_error(mpack_reader_t* reader, mpack_error_t error) {
mpack_log("reader %p setting error %i: %s\n", reader, (int)error, mpack_error_to_string(error));
if (reader->error == mpack_ok) {
reader->error = error;
reader->end = reader->data;
if (reader->error_fn)
reader->error_fn(reader, error);
}
}
// Loops on the fill function, reading between the minimum and
// maximum number of bytes and flagging an error if it fails.
MPACK_NOINLINE static size_t mpack_fill_range(mpack_reader_t* reader, char* p, size_t min_bytes, size_t max_bytes) {
mpack_assert(reader->fill != NULL, "mpack_fill_range() called with no fill function?");
mpack_assert(min_bytes > 0, "cannot fill zero bytes!");
mpack_assert(max_bytes >= min_bytes, "min_bytes %i cannot be larger than max_bytes %i!",
(int)min_bytes, (int)max_bytes);
size_t count = 0;
while (count < min_bytes) {
size_t read = reader->fill(reader, p + count, max_bytes - count);
// Reader fill functions can flag an error or return 0 on failure. We
// also guard against functions that -1 just in case.
if (mpack_reader_error(reader) != mpack_ok)
return 0;
if (read == 0 || read == ((size_t)(-1))) {
mpack_reader_flag_error(reader, mpack_error_io);
return 0;
}
count += read;
}
return count;
}
MPACK_NOINLINE bool mpack_reader_ensure_straddle(mpack_reader_t* reader, size_t count) {
mpack_assert(count != 0, "cannot ensure zero bytes!");
mpack_assert(reader->error == mpack_ok, "reader cannot be in an error state!");
mpack_assert(count > (size_t)(reader->end - reader->data),
"straddling ensure requested for %i bytes, but there are %i bytes "
"left in buffer. call mpack_reader_ensure() instead",
(int)count, (int)(reader->end - reader->data));
// we'll need a fill function to get more data. if there's no
// fill function, the buffer should contain an entire MessagePack
// object, so we raise mpack_error_invalid instead of mpack_error_io
// on truncated data.
if (reader->fill == NULL) {
mpack_reader_flag_error(reader, mpack_error_invalid);
return false;
}
// we need enough space in the buffer. if the buffer is not
// big enough, we return mpack_error_too_big (since this is
// for an in-place read larger than the buffer size.)
if (count > reader->size) {
mpack_reader_flag_error(reader, mpack_error_too_big);
return false;
}
// move the existing data to the start of the buffer
size_t left = (size_t)(reader->end - reader->data);
mpack_memmove(reader->buffer, reader->data, left);
reader->end -= reader->data - reader->buffer;
reader->data = reader->buffer;
// read at least the necessary number of bytes, accepting up to the
// buffer size
size_t read = mpack_fill_range(reader, reader->buffer + left,
count - left, reader->size - left);
if (mpack_reader_error(reader) != mpack_ok)
return false;
reader->end += read;
return true;
}
// Reads count bytes into p. Used when there are not enough bytes
// left in the buffer to satisfy a read.
MPACK_NOINLINE void mpack_read_native_straddle(mpack_reader_t* reader, char* p, size_t count) {
mpack_assert(count == 0 || p != NULL, "data pointer for %i bytes is NULL", (int)count);
if (mpack_reader_error(reader) != mpack_ok) {
mpack_memset(p, 0, count);
return;
}
size_t left = (size_t)(reader->end - reader->data);
mpack_log("big read for %i bytes into %p, %i left in buffer, buffer size %i\n",
(int)count, p, (int)left, (int)reader->size);
if (count <= left) {
mpack_assert(0,
"big read requested for %i bytes, but there are %i bytes "
"left in buffer. call mpack_read_native() instead",
(int)count, (int)left);
mpack_reader_flag_error(reader, mpack_error_bug);
mpack_memset(p, 0, count);
return;
}
// we'll need a fill function to get more data. if there's no
// fill function, the buffer should contain an entire MessagePack
// object, so we raise mpack_error_invalid instead of mpack_error_io
// on truncated data.
if (reader->fill == NULL) {
mpack_reader_flag_error(reader, mpack_error_invalid);
mpack_memset(p, 0, count);
return;
}
if (reader->size == 0) {
// somewhat debatable what error should be returned here. when
// initializing a reader with an in-memory buffer it's not
// necessarily a bug if the data is blank; it might just have
// been truncated to zero. for this reason we return the same
// error as if the data was truncated.
mpack_reader_flag_error(reader, mpack_error_io);
mpack_memset(p, 0, count);
return;
}
// flush what's left of the buffer
if (left > 0) {
mpack_log("flushing %i bytes remaining in buffer\n", (int)left);
mpack_memcpy(p, reader->data, left);
count -= left;
p += left;
reader->data += left;
}
// if the remaining data needed is some small fraction of the
// buffer size, we'll try to fill the buffer as much as possible
// and copy the needed data out.
if (count <= reader->size / MPACK_READER_SMALL_FRACTION_DENOMINATOR) {
size_t read = mpack_fill_range(reader, reader->buffer, count, reader->size);
if (mpack_reader_error(reader) != mpack_ok)
return;
mpack_memcpy(p, reader->buffer, count);
reader->data = reader->buffer + count;
reader->end = reader->buffer + read;
// otherwise we read the remaining data directly into the target.
} else {
mpack_log("reading %i additional bytes\n", (int)count);
mpack_fill_range(reader, p, count, count);
}
}
MPACK_NOINLINE static void mpack_skip_bytes_straddle(mpack_reader_t* reader, size_t count) {
// we'll need at least a fill function to skip more data. if there's
// no fill function, the buffer should contain an entire MessagePack
// object, so we raise mpack_error_invalid instead of mpack_error_io
// on truncated data. (see mpack_read_native_straddle())
if (reader->fill == NULL) {
mpack_log("reader has no fill function!\n");
mpack_reader_flag_error(reader, mpack_error_invalid);
return;
}
// discard whatever's left in the buffer
size_t left = (size_t)(reader->end - reader->data);
mpack_log("discarding %i bytes still in buffer\n", (int)left);
count -= left;
reader->data = reader->end;
// use the skip function if we've got one, and if we're trying
// to skip a lot of data. if we only need to skip some tiny
// fraction of the buffer size, it's probably better to just
// fill the buffer and skip from it instead of trying to seek.
if (reader->skip && count > reader->size / 16) {
mpack_log("calling skip function for %i bytes\n", (int)count);
reader->skip(reader, count);
return;
}
mpack_reader_skip_using_fill(reader, count);
}
void mpack_skip_bytes(mpack_reader_t* reader, size_t count) {
if (mpack_reader_error(reader) != mpack_ok)
return;
mpack_log("skip requested for %i bytes\n", (int)count);
mpack_reader_track_bytes(reader, count);
// check if we have enough in the buffer already
size_t left = (size_t)(reader->end - reader->data);
if (left >= count) {
mpack_log("skipping %i bytes still in buffer\n", (int)count);
reader->data += count;
return;
}
mpack_skip_bytes_straddle(reader, count);
}
MPACK_NOINLINE static void mpack_reader_skip_using_fill(mpack_reader_t* reader, size_t count) {
mpack_assert(reader->fill != NULL, "missing fill function!");
mpack_assert(reader->data == reader->end, "there are bytes left in the buffer!");
mpack_assert(reader->error == mpack_ok, "should not have called this in an error state (%i)", reader->error);
mpack_log("skip using fill for %i bytes\n", (int)count);
// fill and discard multiples of the buffer size
while (count > reader->size) {
mpack_log("filling and discarding buffer of %i bytes\n", (int)reader->size);
if (mpack_fill_range(reader, reader->buffer, reader->size, reader->size) < reader->size) {
mpack_reader_flag_error(reader, mpack_error_io);
return;
}
count -= reader->size;
}
// fill the buffer as much as possible
reader->data = reader->buffer;
size_t read = mpack_fill_range(reader, reader->buffer, count, reader->size);
if (read < count) {
mpack_reader_flag_error(reader, mpack_error_io);
return;
}
reader->end = reader->data + read;
mpack_log("filled %i bytes into buffer; discarding %i bytes\n", (int)read, (int)count);
reader->data += count;
}
void mpack_read_bytes(mpack_reader_t* reader, char* p, size_t count) {
mpack_assert(p != NULL, "destination for read of %i bytes is NULL", (int)count);
mpack_reader_track_bytes(reader, count);
mpack_read_native(reader, p, count);
}
void mpack_read_utf8(mpack_reader_t* reader, char* p, size_t byte_count) {
mpack_assert(p != NULL, "destination for read of %i bytes is NULL", (int)byte_count);
mpack_reader_track_str_bytes_all(reader, byte_count);
mpack_read_native(reader, p, byte_count);
if (mpack_reader_error(reader) == mpack_ok && !mpack_utf8_check(p, byte_count))
mpack_reader_flag_error(reader, mpack_error_type);
}
static void mpack_read_cstr_unchecked(mpack_reader_t* reader, char* buf, size_t buffer_size, size_t byte_count) {
mpack_assert(buf != NULL, "destination for read of %i bytes is NULL", (int)byte_count);
mpack_assert(buffer_size >= 1, "buffer size is zero; you must have room for at least a null-terminator");
if (mpack_reader_error(reader)) {
buf[0] = 0;
return;
}
if (byte_count > buffer_size - 1) {
mpack_reader_flag_error(reader, mpack_error_too_big);
buf[0] = 0;
return;
}
mpack_reader_track_str_bytes_all(reader, byte_count);
mpack_read_native(reader, buf, byte_count);
buf[byte_count] = 0;
}
void mpack_read_cstr(mpack_reader_t* reader, char* buf, size_t buffer_size, size_t byte_count) {
mpack_read_cstr_unchecked(reader, buf, buffer_size, byte_count);
// check for null bytes
if (mpack_reader_error(reader) == mpack_ok && !mpack_str_check_no_null(buf, byte_count)) {
buf[0] = 0;
mpack_reader_flag_error(reader, mpack_error_type);
}
}
void mpack_read_utf8_cstr(mpack_reader_t* reader, char* buf, size_t buffer_size, size_t byte_count) {
mpack_read_cstr_unchecked(reader, buf, buffer_size, byte_count);
// check encoding
if (mpack_reader_error(reader) == mpack_ok && !mpack_utf8_check_no_null(buf, byte_count)) {
buf[0] = 0;
mpack_reader_flag_error(reader, mpack_error_type);
}
}
#ifdef MPACK_MALLOC
// Reads native bytes with error callback disabled. This allows MPack reader functions
// to hold an allocated buffer and read native data into it without leaking it in
// case of a non-local jump (longjmp, throw) out of an error handler.
static void mpack_read_native_noerrorfn(mpack_reader_t* reader, char* p, size_t count) {
mpack_assert(reader->error == mpack_ok, "cannot call if an error is already flagged!");
mpack_reader_error_t error_fn = reader->error_fn;
reader->error_fn = NULL;
mpack_read_native(reader, p, count);
reader->error_fn = error_fn;
}
char* mpack_read_bytes_alloc_impl(mpack_reader_t* reader, size_t count, bool null_terminated) {
// track the bytes first in case it jumps
mpack_reader_track_bytes(reader, count);
if (mpack_reader_error(reader) != mpack_ok)
return NULL;
// cannot allocate zero bytes. this is not an error.
if (count == 0 && null_terminated == false)
return NULL;
// allocate data
char* data = (char*)MPACK_MALLOC(count + (null_terminated ? 1 : 0)); // TODO: can this overflow?
if (data == NULL) {
mpack_reader_flag_error(reader, mpack_error_memory);
return NULL;
}
// read with error callback disabled so we don't leak our buffer
mpack_read_native_noerrorfn(reader, data, count);
// report flagged errors
if (mpack_reader_error(reader) != mpack_ok) {
MPACK_FREE(data);
if (reader->error_fn)
reader->error_fn(reader, mpack_reader_error(reader));
return NULL;
}
if (null_terminated)
data[count] = '\0';
return data;
}
#endif
// read inplace without tracking (since there are different
// tracking modes for different inplace readers)
static const char* mpack_read_bytes_inplace_notrack(mpack_reader_t* reader, size_t count) {
if (mpack_reader_error(reader) != mpack_ok)
return NULL;
// if we have enough bytes already in the buffer, we can return it directly.
if ((size_t)(reader->end - reader->data) >= count) {
const char* bytes = reader->data;
reader->data += count;
return bytes;
}
if (!mpack_reader_ensure(reader, count))
return NULL;
const char* bytes = reader->data;
reader->data += count;
return bytes;
}
const char* mpack_read_bytes_inplace(mpack_reader_t* reader, size_t count) {
mpack_reader_track_bytes(reader, count);
return mpack_read_bytes_inplace_notrack(reader, count);
}
const char* mpack_read_utf8_inplace(mpack_reader_t* reader, size_t count) {
mpack_reader_track_str_bytes_all(reader, count);
const char* str = mpack_read_bytes_inplace_notrack(reader, count);
if (mpack_reader_error(reader) == mpack_ok && !mpack_utf8_check(str, count)) {
mpack_reader_flag_error(reader, mpack_error_type);
return NULL;
}
return str;
}
static size_t mpack_parse_tag(mpack_reader_t* reader, mpack_tag_t* tag) {
mpack_assert(reader->error == mpack_ok, "reader cannot be in an error state!");
if (!mpack_reader_ensure(reader, 1))
return 0;
uint8_t type = mpack_load_u8(reader->data);
// unfortunately, by far the fastest way to parse a tag is to switch
// on the first byte, and to explicitly list every possible byte. so for
// infix types, the list of cases is quite large.
//
// in size-optimized builds, we switch on the top four bits first to
// handle most infix types with a smaller jump table to save space.
#if MPACK_OPTIMIZE_FOR_SIZE
switch (type >> 4) {
// positive fixnum
case 0x0: case 0x1: case 0x2: case 0x3:
case 0x4: case 0x5: case 0x6: case 0x7:
*tag = mpack_tag_make_uint(type);
return 1;
// negative fixnum
case 0xe: case 0xf:
*tag = mpack_tag_make_int((int8_t)type);
return 1;
// fixmap
case 0x8:
*tag = mpack_tag_make_map(type & ~0xf0u);
return 1;
// fixarray
case 0x9:
*tag = mpack_tag_make_array(type & ~0xf0u);
return 1;
// fixstr
case 0xa: case 0xb:
*tag = mpack_tag_make_str(type & ~0xe0u);
return 1;
// not one of the common infix types
default:
break;
}
#endif
// handle individual type tags
switch (type) {
#if !MPACK_OPTIMIZE_FOR_SIZE
// positive fixnum
case 0x00: case 0x01: case 0x02: case 0x03: case 0x04: case 0x05: case 0x06: case 0x07:
case 0x08: case 0x09: case 0x0a: case 0x0b: case 0x0c: case 0x0d: case 0x0e: case 0x0f:
case 0x10: case 0x11: case 0x12: case 0x13: case 0x14: case 0x15: case 0x16: case 0x17:
case 0x18: case 0x19: case 0x1a: case 0x1b: case 0x1c: case 0x1d: case 0x1e: case 0x1f:
case 0x20: case 0x21: case 0x22: case 0x23: case 0x24: case 0x25: case 0x26: case 0x27:
case 0x28: case 0x29: case 0x2a: case 0x2b: case 0x2c: case 0x2d: case 0x2e: case 0x2f:
case 0x30: case 0x31: case 0x32: case 0x33: case 0x34: case 0x35: case 0x36: case 0x37:
case 0x38: case 0x39: case 0x3a: case 0x3b: case 0x3c: case 0x3d: case 0x3e: case 0x3f:
case 0x40: case 0x41: case 0x42: case 0x43: case 0x44: case 0x45: case 0x46: case 0x47:
case 0x48: case 0x49: case 0x4a: case 0x4b: case 0x4c: case 0x4d: case 0x4e: case 0x4f:
case 0x50: case 0x51: case 0x52: case 0x53: case 0x54: case 0x55: case 0x56: case 0x57:
case 0x58: case 0x59: case 0x5a: case 0x5b: case 0x5c: case 0x5d: case 0x5e: case 0x5f:
case 0x60: case 0x61: case 0x62: case 0x63: case 0x64: case 0x65: case 0x66: case 0x67:
case 0x68: case 0x69: case 0x6a: case 0x6b: case 0x6c: case 0x6d: case 0x6e: case 0x6f:
case 0x70: case 0x71: case 0x72: case 0x73: case 0x74: case 0x75: case 0x76: case 0x77:
case 0x78: case 0x79: case 0x7a: case 0x7b: case 0x7c: case 0x7d: case 0x7e: case 0x7f:
*tag = mpack_tag_make_uint(type);
return 1;
// negative fixnum
case 0xe0: case 0xe1: case 0xe2: case 0xe3: case 0xe4: case 0xe5: case 0xe6: case 0xe7:
case 0xe8: case 0xe9: case 0xea: case 0xeb: case 0xec: case 0xed: case 0xee: case 0xef:
case 0xf0: case 0xf1: case 0xf2: case 0xf3: case 0xf4: case 0xf5: case 0xf6: case 0xf7:
case 0xf8: case 0xf9: case 0xfa: case 0xfb: case 0xfc: case 0xfd: case 0xfe: case 0xff:
*tag = mpack_tag_make_int((int8_t)type);
return 1;
// fixmap
case 0x80: case 0x81: case 0x82: case 0x83: case 0x84: case 0x85: case 0x86: case 0x87:
case 0x88: case 0x89: case 0x8a: case 0x8b: case 0x8c: case 0x8d: case 0x8e: case 0x8f:
*tag = mpack_tag_make_map(type & ~0xf0u);
return 1;
// fixarray
case 0x90: case 0x91: case 0x92: case 0x93: case 0x94: case 0x95: case 0x96: case 0x97:
case 0x98: case 0x99: case 0x9a: case 0x9b: case 0x9c: case 0x9d: case 0x9e: case 0x9f:
*tag = mpack_tag_make_array(type & ~0xf0u);
return 1;
// fixstr
case 0xa0: case 0xa1: case 0xa2: case 0xa3: case 0xa4: case 0xa5: case 0xa6: case 0xa7:
case 0xa8: case 0xa9: case 0xaa: case 0xab: case 0xac: case 0xad: case 0xae: case 0xaf:
case 0xb0: case 0xb1: case 0xb2: case 0xb3: case 0xb4: case 0xb5: case 0xb6: case 0xb7:
case 0xb8: case 0xb9: case 0xba: case 0xbb: case 0xbc: case 0xbd: case 0xbe: case 0xbf:
*tag = mpack_tag_make_str(type & ~0xe0u);
return 1;
#endif
// nil
case 0xc0:
*tag = mpack_tag_make_nil();
return 1;
// bool
case 0xc2: case 0xc3:
*tag = mpack_tag_make_bool((bool)(type & 1));
return 1;
// bin8
case 0xc4:
if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_BIN8))
return 0;
*tag = mpack_tag_make_bin(mpack_load_u8(reader->data + 1));
return MPACK_TAG_SIZE_BIN8;
// bin16
case 0xc5:
if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_BIN16))
return 0;
*tag = mpack_tag_make_bin(mpack_load_u16(reader->data + 1));
return MPACK_TAG_SIZE_BIN16;
// bin32
case 0xc6:
if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_BIN32))
return 0;
*tag = mpack_tag_make_bin(mpack_load_u32(reader->data + 1));
return MPACK_TAG_SIZE_BIN32;
#if MPACK_EXTENSIONS
// ext8
case 0xc7:
if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_EXT8))
return 0;
*tag = mpack_tag_make_ext(mpack_load_i8(reader->data + 2), mpack_load_u8(reader->data + 1));
return MPACK_TAG_SIZE_EXT8;
// ext16
case 0xc8:
if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_EXT16))
return 0;
*tag = mpack_tag_make_ext(mpack_load_i8(reader->data + 3), mpack_load_u16(reader->data + 1));
return MPACK_TAG_SIZE_EXT16;
// ext32
case 0xc9:
if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_EXT32))
return 0;
*tag = mpack_tag_make_ext(mpack_load_i8(reader->data + 5), mpack_load_u32(reader->data + 1));
return MPACK_TAG_SIZE_EXT32;
#endif
// float
case 0xca:
if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_FLOAT))
return 0;
*tag = mpack_tag_make_float(mpack_load_float(reader->data + 1));
return MPACK_TAG_SIZE_FLOAT;
// double
case 0xcb:
if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_DOUBLE))
return 0;
*tag = mpack_tag_make_double(mpack_load_double(reader->data + 1));
return MPACK_TAG_SIZE_DOUBLE;
// uint8
case 0xcc:
if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_U8))
return 0;
*tag = mpack_tag_make_uint(mpack_load_u8(reader->data + 1));
return MPACK_TAG_SIZE_U8;
// uint16
case 0xcd:
if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_U16))
return 0;
*tag = mpack_tag_make_uint(mpack_load_u16(reader->data + 1));
return MPACK_TAG_SIZE_U16;
// uint32
case 0xce:
if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_U32))
return 0;
*tag = mpack_tag_make_uint(mpack_load_u32(reader->data + 1));
return MPACK_TAG_SIZE_U32;
// uint64
case 0xcf:
if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_U64))
return 0;
*tag = mpack_tag_make_uint(mpack_load_u64(reader->data + 1));
return MPACK_TAG_SIZE_U64;
// int8
case 0xd0:
if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_I8))
return 0;
*tag = mpack_tag_make_int(mpack_load_i8(reader->data + 1));
return MPACK_TAG_SIZE_I8;
// int16
case 0xd1:
if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_I16))
return 0;
*tag = mpack_tag_make_int(mpack_load_i16(reader->data + 1));
return MPACK_TAG_SIZE_I16;
// int32
case 0xd2:
if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_I32))
return 0;
*tag = mpack_tag_make_int(mpack_load_i32(reader->data + 1));
return MPACK_TAG_SIZE_I32;
// int64
case 0xd3:
if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_I64))
return 0;
*tag = mpack_tag_make_int(mpack_load_i64(reader->data + 1));
return MPACK_TAG_SIZE_I64;
#if MPACK_EXTENSIONS
// fixext1
case 0xd4:
if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_FIXEXT1))
return 0;
*tag = mpack_tag_make_ext(mpack_load_i8(reader->data + 1), 1);
return MPACK_TAG_SIZE_FIXEXT1;
// fixext2
case 0xd5:
if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_FIXEXT2))
return 0;
*tag = mpack_tag_make_ext(mpack_load_i8(reader->data + 1), 2);
return MPACK_TAG_SIZE_FIXEXT2;
// fixext4
case 0xd6:
if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_FIXEXT4))
return 0;
*tag = mpack_tag_make_ext(mpack_load_i8(reader->data + 1), 4);
return 2;
// fixext8
case 0xd7:
if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_FIXEXT8))
return 0;
*tag = mpack_tag_make_ext(mpack_load_i8(reader->data + 1), 8);
return MPACK_TAG_SIZE_FIXEXT8;
// fixext16
case 0xd8:
if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_FIXEXT16))
return 0;
*tag = mpack_tag_make_ext(mpack_load_i8(reader->data + 1), 16);
return MPACK_TAG_SIZE_FIXEXT16;
#endif
// str8
case 0xd9:
if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_STR8))
return 0;
*tag = mpack_tag_make_str(mpack_load_u8(reader->data + 1));
return MPACK_TAG_SIZE_STR8;
// str16
case 0xda:
if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_STR16))
return 0;
*tag = mpack_tag_make_str(mpack_load_u16(reader->data + 1));
return MPACK_TAG_SIZE_STR16;
// str32
case 0xdb:
if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_STR32))
return 0;
*tag = mpack_tag_make_str(mpack_load_u32(reader->data + 1));
return MPACK_TAG_SIZE_STR32;
// array16
case 0xdc:
if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_ARRAY16))
return 0;
*tag = mpack_tag_make_array(mpack_load_u16(reader->data + 1));
return MPACK_TAG_SIZE_ARRAY16;
// array32
case 0xdd:
if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_ARRAY32))
return 0;
*tag = mpack_tag_make_array(mpack_load_u32(reader->data + 1));
return MPACK_TAG_SIZE_ARRAY32;
// map16
case 0xde:
if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_MAP16))
return 0;
*tag = mpack_tag_make_map(mpack_load_u16(reader->data + 1));
return MPACK_TAG_SIZE_MAP16;
// map32
case 0xdf:
if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_MAP32))
return 0;
*tag = mpack_tag_make_map(mpack_load_u32(reader->data + 1));
return MPACK_TAG_SIZE_MAP32;
// reserved
case 0xc1:
mpack_reader_flag_error(reader, mpack_error_invalid);
return 0;
#if !MPACK_EXTENSIONS
// ext
case 0xc7: // fallthrough
case 0xc8: // fallthrough
case 0xc9: // fallthrough
// fixext
case 0xd4: // fallthrough
case 0xd5: // fallthrough
case 0xd6: // fallthrough
case 0xd7: // fallthrough
case 0xd8:
mpack_reader_flag_error(reader, mpack_error_unsupported);
return 0;
#endif
#if MPACK_OPTIMIZE_FOR_SIZE
// any other bytes should have been handled by the infix switch
default:
break;
#endif
}
mpack_assert(0, "unreachable");
return 0;
}
mpack_tag_t mpack_read_tag(mpack_reader_t* reader) {
mpack_log("reading tag\n");
// make sure we can read a tag
if (mpack_reader_error(reader) != mpack_ok)
return mpack_tag_nil();
if (mpack_reader_track_element(reader) != mpack_ok)
return mpack_tag_nil();
mpack_tag_t tag = MPACK_TAG_ZERO;
size_t count = mpack_parse_tag(reader, &tag);
if (count == 0)
return mpack_tag_nil();
#if MPACK_READ_TRACKING
mpack_error_t track_error = mpack_ok;
switch (tag.type) {
case mpack_type_map:
case mpack_type_array:
track_error = mpack_track_push(&reader->track, tag.type, tag.v.n);
break;
#if MPACK_EXTENSIONS
case mpack_type_ext:
#endif
case mpack_type_str:
case mpack_type_bin:
track_error = mpack_track_push(&reader->track, tag.type, tag.v.l);
break;
default:
break;
}
if (track_error != mpack_ok) {
mpack_reader_flag_error(reader, track_error);
return mpack_tag_nil();
}
#endif
reader->data += count;
return tag;
}
mpack_tag_t mpack_peek_tag(mpack_reader_t* reader) {
mpack_log("peeking tag\n");
// make sure we can peek a tag
if (mpack_reader_error(reader) != mpack_ok)
return mpack_tag_nil();
if (mpack_reader_track_peek_element(reader) != mpack_ok)
return mpack_tag_nil();
mpack_tag_t tag = MPACK_TAG_ZERO;
if (mpack_parse_tag(reader, &tag) == 0)
return mpack_tag_nil();
return tag;
}
void mpack_discard(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (mpack_reader_error(reader))
return;
switch (var.type) {
case mpack_type_str:
mpack_skip_bytes(reader, var.v.l);
mpack_done_str(reader);
break;
case mpack_type_bin:
mpack_skip_bytes(reader, var.v.l);
mpack_done_bin(reader);
break;
#if MPACK_EXTENSIONS
case mpack_type_ext:
mpack_skip_bytes(reader, var.v.l);
mpack_done_ext(reader);
break;
#endif
case mpack_type_array: {
for (; var.v.n > 0; --var.v.n) {
mpack_discard(reader);
if (mpack_reader_error(reader))
break;
}
mpack_done_array(reader);
break;
}
case mpack_type_map: {
for (; var.v.n > 0; --var.v.n) {
mpack_discard(reader);
mpack_discard(reader);
if (mpack_reader_error(reader))
break;
}
mpack_done_map(reader);
break;
}
default:
break;
}
}
#if MPACK_EXTENSIONS
mpack_timestamp_t mpack_read_timestamp(mpack_reader_t* reader, size_t size) {
mpack_timestamp_t timestamp = {0, 0};
if (size != 4 && size != 8 && size != 12) {
mpack_reader_flag_error(reader, mpack_error_invalid);
return timestamp;
}
char buf[12];
mpack_read_bytes(reader, buf, size);
mpack_done_ext(reader);
if (mpack_reader_error(reader) != mpack_ok)
return timestamp;
switch (size) {
case 4:
timestamp.seconds = (int64_t)(uint64_t)mpack_load_u32(buf);
break;
case 8: {
uint64_t packed = mpack_load_u64(buf);
timestamp.seconds = (int64_t)(packed & ((UINT64_C(1) << 34) - 1));
timestamp.nanoseconds = (uint32_t)(packed >> 34);
break;
}
case 12:
timestamp.nanoseconds = mpack_load_u32(buf);
timestamp.seconds = mpack_load_i64(buf + 4);
break;
default:
mpack_assert(false, "unreachable");
break;
}
if (timestamp.nanoseconds > MPACK_TIMESTAMP_NANOSECONDS_MAX) {
mpack_reader_flag_error(reader, mpack_error_invalid);
mpack_timestamp_t zero = {0, 0};
return zero;
}
return timestamp;
}
#endif
#if MPACK_READ_TRACKING
void mpack_done_type(mpack_reader_t* reader, mpack_type_t type) {
if (mpack_reader_error(reader) == mpack_ok)
mpack_reader_flag_if_error(reader, mpack_track_pop(&reader->track, type));
}
#endif
#if MPACK_DEBUG && MPACK_STDIO
static size_t mpack_print_read_prefix(mpack_reader_t* reader, size_t length, char* buffer, size_t buffer_size) {
if (length == 0)
return 0;
size_t read = (length < buffer_size) ? length : buffer_size;
mpack_read_bytes(reader, buffer, read);
if (mpack_reader_error(reader) != mpack_ok)
return 0;
mpack_skip_bytes(reader, length - read);
return read;
}
static void mpack_print_element(mpack_reader_t* reader, mpack_print_t* print, size_t depth) {
mpack_tag_t val = mpack_read_tag(reader);
if (mpack_reader_error(reader) != mpack_ok)
return;
// We read some bytes from bin and ext so we can print its prefix in hex.
char buffer[MPACK_PRINT_BYTE_COUNT];
size_t count = 0;
switch (val.type) {
case mpack_type_str:
mpack_print_append_cstr(print, "\"");
for (size_t i = 0; i < val.v.l; ++i) {
char c;
mpack_read_bytes(reader, &c, 1);
if (mpack_reader_error(reader) != mpack_ok)
return;
switch (c) {
case '\n': mpack_print_append_cstr(print, "\\n"); break;
case '\\': mpack_print_append_cstr(print, "\\\\"); break;
case '"': mpack_print_append_cstr(print, "\\\""); break;
default: mpack_print_append(print, &c, 1); break;
}
}
mpack_print_append_cstr(print, "\"");
mpack_done_str(reader);
return;
case mpack_type_array:
mpack_print_append_cstr(print, "[\n");
for (size_t i = 0; i < val.v.n; ++i) {
for (size_t j = 0; j < depth + 1; ++j)
mpack_print_append_cstr(print, " ");
mpack_print_element(reader, print, depth + 1);
if (mpack_reader_error(reader) != mpack_ok)
return;
if (i != val.v.n - 1)
mpack_print_append_cstr(print, ",");
mpack_print_append_cstr(print, "\n");
}
for (size_t i = 0; i < depth; ++i)
mpack_print_append_cstr(print, " ");
mpack_print_append_cstr(print, "]");
mpack_done_array(reader);
return;
case mpack_type_map:
mpack_print_append_cstr(print, "{\n");
for (size_t i = 0; i < val.v.n; ++i) {
for (size_t j = 0; j < depth + 1; ++j)
mpack_print_append_cstr(print, " ");
mpack_print_element(reader, print, depth + 1);
if (mpack_reader_error(reader) != mpack_ok)
return;
mpack_print_append_cstr(print, ": ");
mpack_print_element(reader, print, depth + 1);
if (mpack_reader_error(reader) != mpack_ok)
return;
if (i != val.v.n - 1)
mpack_print_append_cstr(print, ",");
mpack_print_append_cstr(print, "\n");
}
for (size_t i = 0; i < depth; ++i)
mpack_print_append_cstr(print, " ");
mpack_print_append_cstr(print, "}");
mpack_done_map(reader);
return;
// The above cases return so as not to print a pseudo-json value. The
// below cases break and print pseudo-json.
case mpack_type_bin:
count = mpack_print_read_prefix(reader, mpack_tag_bin_length(&val), buffer, sizeof(buffer));
mpack_done_bin(reader);
break;
#if MPACK_EXTENSIONS
case mpack_type_ext:
count = mpack_print_read_prefix(reader, mpack_tag_ext_length(&val), buffer, sizeof(buffer));
mpack_done_ext(reader);
break;
#endif
default:
break;
}
char buf[256];
mpack_tag_debug_pseudo_json(val, buf, sizeof(buf), buffer, count);
mpack_print_append_cstr(print, buf);
}
static void mpack_print_and_destroy(mpack_reader_t* reader, mpack_print_t* print, size_t depth) {
for (size_t i = 0; i < depth; ++i)
mpack_print_append_cstr(print, " ");
mpack_print_element(reader, print, depth);
size_t remaining = mpack_reader_remaining(reader, NULL);
char buf[256];
if (mpack_reader_destroy(reader) != mpack_ok) {
mpack_snprintf(buf, sizeof(buf), "\n<mpack parsing error %s>", mpack_error_to_string(mpack_reader_error(reader)));
buf[sizeof(buf) - 1] = '\0';
mpack_print_append_cstr(print, buf);
} else if (remaining > 0) {
mpack_snprintf(buf, sizeof(buf), "\n<%i extra bytes at end of message>", (int)remaining);
buf[sizeof(buf) - 1] = '\0';
mpack_print_append_cstr(print, buf);
}
}
static void mpack_print_data(const char* data, size_t len, mpack_print_t* print, size_t depth) {
mpack_reader_t reader;
mpack_reader_init_data(&reader, data, len);
mpack_print_and_destroy(&reader, print, depth);
}
void mpack_print_data_to_buffer(const char* data, size_t data_size, char* buffer, size_t buffer_size) {
if (buffer_size == 0) {
mpack_assert(false, "buffer size is zero!");
return;
}
mpack_print_t print;
mpack_memset(&print, 0, sizeof(print));
print.buffer = buffer;
print.size = buffer_size;
mpack_print_data(data, data_size, &print, 0);
mpack_print_append(&print, "", 1); // null-terminator
mpack_print_flush(&print);
// we always make sure there's a null-terminator at the end of the buffer
// in case we ran out of space.
print.buffer[print.size - 1] = '\0';
}
void mpack_print_data_to_callback(const char* data, size_t size, mpack_print_callback_t callback, void* context) {
char buffer[1024];
mpack_print_t print;
mpack_memset(&print, 0, sizeof(print));
print.buffer = buffer;
print.size = sizeof(buffer);
print.callback = callback;
print.context = context;
mpack_print_data(data, size, &print, 0);
mpack_print_flush(&print);
}
void mpack_print_data_to_file(const char* data, size_t len, FILE* file) {
mpack_assert(data != NULL, "data is NULL");
mpack_assert(file != NULL, "file is NULL");
char buffer[1024];
mpack_print_t print;
mpack_memset(&print, 0, sizeof(print));
print.buffer = buffer;
print.size = sizeof(buffer);
print.callback = &mpack_print_file_callback;
print.context = file;
mpack_print_data(data, len, &print, 2);
mpack_print_append_cstr(&print, "\n");
mpack_print_flush(&print);
}
void mpack_print_stdfile_to_callback(FILE* file, mpack_print_callback_t callback, void* context) {
char buffer[1024];
mpack_print_t print;
mpack_memset(&print, 0, sizeof(print));
print.buffer = buffer;
print.size = sizeof(buffer);
print.callback = callback;
print.context = context;
mpack_reader_t reader;
mpack_reader_init_stdfile(&reader, file, false);
mpack_print_and_destroy(&reader, &print, 0);
mpack_print_flush(&print);
}
#endif
#endif
/* mpack/mpack-expect.c.c */
#define MPACK_INTERNAL 1
/* #include "mpack-expect.h" */
#if MPACK_EXPECT
// Helpers
MPACK_STATIC_INLINE uint8_t mpack_expect_native_u8(mpack_reader_t* reader) {
if (mpack_reader_error(reader) != mpack_ok)
return 0;
uint8_t type;
if (!mpack_reader_ensure(reader, sizeof(type)))
return 0;
type = mpack_load_u8(reader->data);
reader->data += sizeof(type);
return type;
}
#if !MPACK_OPTIMIZE_FOR_SIZE
MPACK_STATIC_INLINE uint16_t mpack_expect_native_u16(mpack_reader_t* reader) {
if (mpack_reader_error(reader) != mpack_ok)
return 0;
uint16_t type;
if (!mpack_reader_ensure(reader, sizeof(type)))
return 0;
type = mpack_load_u16(reader->data);
reader->data += sizeof(type);
return type;
}
MPACK_STATIC_INLINE uint32_t mpack_expect_native_u32(mpack_reader_t* reader) {
if (mpack_reader_error(reader) != mpack_ok)
return 0;
uint32_t type;
if (!mpack_reader_ensure(reader, sizeof(type)))
return 0;
type = mpack_load_u32(reader->data);
reader->data += sizeof(type);
return type;
}
#endif
MPACK_STATIC_INLINE uint8_t mpack_expect_type_byte(mpack_reader_t* reader) {
mpack_reader_track_element(reader);
return mpack_expect_native_u8(reader);
}
// Basic Number Functions
uint8_t mpack_expect_u8(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_uint) {
if (var.v.u <= UINT8_MAX)
return (uint8_t)var.v.u;
} else if (var.type == mpack_type_int) {
if (var.v.i >= 0 && var.v.i <= UINT8_MAX)
return (uint8_t)var.v.i;
}
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
uint16_t mpack_expect_u16(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_uint) {
if (var.v.u <= UINT16_MAX)
return (uint16_t)var.v.u;
} else if (var.type == mpack_type_int) {
if (var.v.i >= 0 && var.v.i <= UINT16_MAX)
return (uint16_t)var.v.i;
}
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
uint32_t mpack_expect_u32(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_uint) {
if (var.v.u <= UINT32_MAX)
return (uint32_t)var.v.u;
} else if (var.type == mpack_type_int) {
if (var.v.i >= 0 && var.v.i <= UINT32_MAX)
return (uint32_t)var.v.i;
}
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
uint64_t mpack_expect_u64(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_uint) {
return var.v.u;
} else if (var.type == mpack_type_int) {
if (var.v.i >= 0)
return (uint64_t)var.v.i;
}
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
int8_t mpack_expect_i8(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_uint) {
if (var.v.u <= INT8_MAX)
return (int8_t)var.v.u;
} else if (var.type == mpack_type_int) {
if (var.v.i >= INT8_MIN && var.v.i <= INT8_MAX)
return (int8_t)var.v.i;
}
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
int16_t mpack_expect_i16(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_uint) {
if (var.v.u <= INT16_MAX)
return (int16_t)var.v.u;
} else if (var.type == mpack_type_int) {
if (var.v.i >= INT16_MIN && var.v.i <= INT16_MAX)
return (int16_t)var.v.i;
}
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
int32_t mpack_expect_i32(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_uint) {
if (var.v.u <= INT32_MAX)
return (int32_t)var.v.u;
} else if (var.type == mpack_type_int) {
if (var.v.i >= INT32_MIN && var.v.i <= INT32_MAX)
return (int32_t)var.v.i;
}
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
int64_t mpack_expect_i64(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_uint) {
if (var.v.u <= INT64_MAX)
return (int64_t)var.v.u;
} else if (var.type == mpack_type_int) {
return var.v.i;
}
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
float mpack_expect_float(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_uint)
return (float)var.v.u;
else if (var.type == mpack_type_int)
return (float)var.v.i;
else if (var.type == mpack_type_float)
return var.v.f;
else if (var.type == mpack_type_double)
return (float)var.v.d;
mpack_reader_flag_error(reader, mpack_error_type);
return 0.0f;
}
double mpack_expect_double(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_uint)
return (double)var.v.u;
else if (var.type == mpack_type_int)
return (double)var.v.i;
else if (var.type == mpack_type_float)
return (double)var.v.f;
else if (var.type == mpack_type_double)
return var.v.d;
mpack_reader_flag_error(reader, mpack_error_type);
return 0.0;
}
float mpack_expect_float_strict(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_float)
return var.v.f;
mpack_reader_flag_error(reader, mpack_error_type);
return 0.0f;
}
double mpack_expect_double_strict(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_float)
return (double)var.v.f;
else if (var.type == mpack_type_double)
return var.v.d;
mpack_reader_flag_error(reader, mpack_error_type);
return 0.0;
}
// Ranged Number Functions
//
// All ranged functions are identical other than the type, so we
// define their content with a macro. The prototypes are still written
// out in full to support ctags/IDE tools.
#define MPACK_EXPECT_RANGE_IMPL(name, type_t) \
\
/* make sure the range is sensible */ \
mpack_assert(min_value <= max_value, \
"min_value %i must be less than or equal to max_value %i", \
min_value, max_value); \
\
/* read the value */ \
type_t val = mpack_expect_##name(reader); \
if (mpack_reader_error(reader) != mpack_ok) \
return min_value; \
\
/* make sure it fits */ \
if (val < min_value || val > max_value) { \
mpack_reader_flag_error(reader, mpack_error_type); \
return min_value; \
} \
\
return val;
uint8_t mpack_expect_u8_range(mpack_reader_t* reader, uint8_t min_value, uint8_t max_value) {MPACK_EXPECT_RANGE_IMPL(u8, uint8_t)}
uint16_t mpack_expect_u16_range(mpack_reader_t* reader, uint16_t min_value, uint16_t max_value) {MPACK_EXPECT_RANGE_IMPL(u16, uint16_t)}
uint32_t mpack_expect_u32_range(mpack_reader_t* reader, uint32_t min_value, uint32_t max_value) {MPACK_EXPECT_RANGE_IMPL(u32, uint32_t)}
uint64_t mpack_expect_u64_range(mpack_reader_t* reader, uint64_t min_value, uint64_t max_value) {MPACK_EXPECT_RANGE_IMPL(u64, uint64_t)}
int8_t mpack_expect_i8_range(mpack_reader_t* reader, int8_t min_value, int8_t max_value) {MPACK_EXPECT_RANGE_IMPL(i8, int8_t)}
int16_t mpack_expect_i16_range(mpack_reader_t* reader, int16_t min_value, int16_t max_value) {MPACK_EXPECT_RANGE_IMPL(i16, int16_t)}
int32_t mpack_expect_i32_range(mpack_reader_t* reader, int32_t min_value, int32_t max_value) {MPACK_EXPECT_RANGE_IMPL(i32, int32_t)}
int64_t mpack_expect_i64_range(mpack_reader_t* reader, int64_t min_value, int64_t max_value) {MPACK_EXPECT_RANGE_IMPL(i64, int64_t)}
float mpack_expect_float_range(mpack_reader_t* reader, float min_value, float max_value) {MPACK_EXPECT_RANGE_IMPL(float, float)}
double mpack_expect_double_range(mpack_reader_t* reader, double min_value, double max_value) {MPACK_EXPECT_RANGE_IMPL(double, double)}
uint32_t mpack_expect_map_range(mpack_reader_t* reader, uint32_t min_value, uint32_t max_value) {MPACK_EXPECT_RANGE_IMPL(map, uint32_t)}
uint32_t mpack_expect_array_range(mpack_reader_t* reader, uint32_t min_value, uint32_t max_value) {MPACK_EXPECT_RANGE_IMPL(array, uint32_t)}
// Matching Number Functions
void mpack_expect_uint_match(mpack_reader_t* reader, uint64_t value) {
if (mpack_expect_u64(reader) != value)
mpack_reader_flag_error(reader, mpack_error_type);
}
void mpack_expect_int_match(mpack_reader_t* reader, int64_t value) {
if (mpack_expect_i64(reader) != value)
mpack_reader_flag_error(reader, mpack_error_type);
}
// Other Basic Types
void mpack_expect_nil(mpack_reader_t* reader) {
if (mpack_expect_type_byte(reader) != 0xc0)
mpack_reader_flag_error(reader, mpack_error_type);
}
bool mpack_expect_bool(mpack_reader_t* reader) {
uint8_t type = mpack_expect_type_byte(reader);
if ((type & ~1) != 0xc2)
mpack_reader_flag_error(reader, mpack_error_type);
return (bool)(type & 1);
}
void mpack_expect_true(mpack_reader_t* reader) {
if (mpack_expect_bool(reader) != true)
mpack_reader_flag_error(reader, mpack_error_type);
}
void mpack_expect_false(mpack_reader_t* reader) {
if (mpack_expect_bool(reader) != false)
mpack_reader_flag_error(reader, mpack_error_type);
}
#if MPACK_EXTENSIONS
mpack_timestamp_t mpack_expect_timestamp(mpack_reader_t* reader) {
mpack_timestamp_t zero = {0, 0};
mpack_tag_t tag = mpack_read_tag(reader);
if (tag.type != mpack_type_ext) {
mpack_reader_flag_error(reader, mpack_error_type);
return zero;
}
if (mpack_tag_ext_exttype(&tag) != MPACK_EXTTYPE_TIMESTAMP) {
mpack_reader_flag_error(reader, mpack_error_type);
return zero;
}
return mpack_read_timestamp(reader, mpack_tag_ext_length(&tag));
}
int64_t mpack_expect_timestamp_truncate(mpack_reader_t* reader) {
return mpack_expect_timestamp(reader).seconds;
}
#endif
// Compound Types
uint32_t mpack_expect_map(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_map)
return var.v.n;
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
void mpack_expect_map_match(mpack_reader_t* reader, uint32_t count) {
if (mpack_expect_map(reader) != count)
mpack_reader_flag_error(reader, mpack_error_type);
}
bool mpack_expect_map_or_nil(mpack_reader_t* reader, uint32_t* count) {
mpack_assert(count != NULL, "count cannot be NULL");
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_nil) {
*count = 0;
return false;
}
if (var.type == mpack_type_map) {
*count = var.v.n;
return true;
}
mpack_reader_flag_error(reader, mpack_error_type);
*count = 0;
return false;
}
bool mpack_expect_map_max_or_nil(mpack_reader_t* reader, uint32_t max_count, uint32_t* count) {
mpack_assert(count != NULL, "count cannot be NULL");
bool has_map = mpack_expect_map_or_nil(reader, count);
if (has_map && *count > max_count) {
*count = 0;
mpack_reader_flag_error(reader, mpack_error_type);
return false;
}
return has_map;
}
uint32_t mpack_expect_array(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_array)
return var.v.n;
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
void mpack_expect_array_match(mpack_reader_t* reader, uint32_t count) {
if (mpack_expect_array(reader) != count)
mpack_reader_flag_error(reader, mpack_error_type);
}
bool mpack_expect_array_or_nil(mpack_reader_t* reader, uint32_t* count) {
mpack_assert(count != NULL, "count cannot be NULL");
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_nil) {
*count = 0;
return false;
}
if (var.type == mpack_type_array) {
*count = var.v.n;
return true;
}
mpack_reader_flag_error(reader, mpack_error_type);
*count = 0;
return false;
}
bool mpack_expect_array_max_or_nil(mpack_reader_t* reader, uint32_t max_count, uint32_t* count) {
mpack_assert(count != NULL, "count cannot be NULL");
bool has_array = mpack_expect_array_or_nil(reader, count);
if (has_array && *count > max_count) {
*count = 0;
mpack_reader_flag_error(reader, mpack_error_type);
return false;
}
return has_array;
}
#ifdef MPACK_MALLOC
void* mpack_expect_array_alloc_impl(mpack_reader_t* reader, size_t element_size, uint32_t max_count, uint32_t* out_count, bool allow_nil) {
mpack_assert(out_count != NULL, "out_count cannot be NULL");
*out_count = 0;
uint32_t count;
bool has_array = true;
if (allow_nil)
has_array = mpack_expect_array_max_or_nil(reader, max_count, &count);
else
count = mpack_expect_array_max(reader, max_count);
if (mpack_reader_error(reader))
return NULL;
// size 0 is not an error; we return NULL for no elements.
if (count == 0) {
// we call mpack_done_array() automatically ONLY if we are using
// the _or_nil variant. this is the only way to allow nil and empty
// to work the same way.
if (allow_nil && has_array)
mpack_done_array(reader);
return NULL;
}
void* p = MPACK_MALLOC(element_size * count);
if (p == NULL) {
mpack_reader_flag_error(reader, mpack_error_memory);
return NULL;
}
*out_count = count;
return p;
}
#endif
// Str, Bin and Ext Functions
uint32_t mpack_expect_str(mpack_reader_t* reader) {
#if MPACK_OPTIMIZE_FOR_SIZE
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_str)
return var.v.l;
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
#else
uint8_t type = mpack_expect_type_byte(reader);
uint32_t count;
if ((type >> 5) == 5) {
count = type & (uint8_t)~0xe0;
} else if (type == 0xd9) {
count = mpack_expect_native_u8(reader);
} else if (type == 0xda) {
count = mpack_expect_native_u16(reader);
} else if (type == 0xdb) {
count = mpack_expect_native_u32(reader);
} else {
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
#if MPACK_READ_TRACKING
mpack_reader_flag_if_error(reader, mpack_track_push(&reader->track, mpack_type_str, count));
#endif
return count;
#endif
}
size_t mpack_expect_str_buf(mpack_reader_t* reader, char* buf, size_t bufsize) {
mpack_assert(buf != NULL, "buf cannot be NULL");
size_t length = mpack_expect_str(reader);
if (mpack_reader_error(reader))
return 0;
if (length > bufsize) {
mpack_reader_flag_error(reader, mpack_error_too_big);
return 0;
}
mpack_read_bytes(reader, buf, length);
if (mpack_reader_error(reader))
return 0;
mpack_done_str(reader);
return length;
}
size_t mpack_expect_utf8(mpack_reader_t* reader, char* buf, size_t size) {
mpack_assert(buf != NULL, "buf cannot be NULL");
size_t length = mpack_expect_str_buf(reader, buf, size);
if (!mpack_utf8_check(buf, length)) {
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
return length;
}
uint32_t mpack_expect_bin(mpack_reader_t* reader) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_bin)
return var.v.l;
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
size_t mpack_expect_bin_buf(mpack_reader_t* reader, char* buf, size_t bufsize) {
mpack_assert(buf != NULL, "buf cannot be NULL");
size_t binsize = mpack_expect_bin(reader);
if (mpack_reader_error(reader))
return 0;
if (binsize > bufsize) {
mpack_reader_flag_error(reader, mpack_error_too_big);
return 0;
}
mpack_read_bytes(reader, buf, binsize);
if (mpack_reader_error(reader))
return 0;
mpack_done_bin(reader);
return binsize;
}
#if MPACK_EXTENSIONS
uint32_t mpack_expect_ext(mpack_reader_t* reader, int8_t* type) {
mpack_tag_t var = mpack_read_tag(reader);
if (var.type == mpack_type_ext) {
*type = mpack_tag_ext_exttype(&var);
return mpack_tag_ext_length(&var);
}
*type = 0;
mpack_reader_flag_error(reader, mpack_error_type);
return 0;
}
size_t mpack_expect_ext_buf(mpack_reader_t* reader, int8_t* type, char* buf, size_t bufsize) {
mpack_assert(buf != NULL, "buf cannot be NULL");
size_t extsize = mpack_expect_ext(reader, type);
if (mpack_reader_error(reader))
return 0;
if (extsize > bufsize) {
*type = 0;
mpack_reader_flag_error(reader, mpack_error_too_big);
return 0;
}
mpack_read_bytes(reader, buf, extsize);
if (mpack_reader_error(reader)) {
*type = 0;
return 0;
}
mpack_done_ext(reader);
return extsize;
}
#endif
void mpack_expect_cstr(mpack_reader_t* reader, char* buf, size_t bufsize) {
uint32_t length = mpack_expect_str(reader);
mpack_read_cstr(reader, buf, bufsize, length);
mpack_done_str(reader);
}
void mpack_expect_utf8_cstr(mpack_reader_t* reader, char* buf, size_t bufsize) {
uint32_t length = mpack_expect_str(reader);
mpack_read_utf8_cstr(reader, buf, bufsize, length);
mpack_done_str(reader);
}
#ifdef MPACK_MALLOC
static char* mpack_expect_cstr_alloc_unchecked(mpack_reader_t* reader, size_t maxsize, size_t* out_length) {
mpack_assert(out_length != NULL, "out_length cannot be NULL");
*out_length = 0;
// make sure argument makes sense
if (maxsize < 1) {
mpack_break("maxsize is zero; you must have room for at least a null-terminator");
mpack_reader_flag_error(reader, mpack_error_bug);
return NULL;
}
if (maxsize > UINT32_MAX)
maxsize = UINT32_MAX;
size_t length = mpack_expect_str_max(reader, (uint32_t)maxsize - 1);
char* str = mpack_read_bytes_alloc_impl(reader, length, true);
mpack_done_str(reader);
if (str)
*out_length = length;
return str;
}
char* mpack_expect_cstr_alloc(mpack_reader_t* reader, size_t maxsize) {
size_t length;
char* str = mpack_expect_cstr_alloc_unchecked(reader, maxsize, &length);
if (str && !mpack_str_check_no_null(str, length)) {
MPACK_FREE(str);
mpack_reader_flag_error(reader, mpack_error_type);
return NULL;
}
return str;
}
char* mpack_expect_utf8_cstr_alloc(mpack_reader_t* reader, size_t maxsize) {
size_t length;
char* str = mpack_expect_cstr_alloc_unchecked(reader, maxsize, &length);
if (str && !mpack_utf8_check_no_null(str, length)) {
MPACK_FREE(str);
mpack_reader_flag_error(reader, mpack_error_type);
return NULL;
}
return str;
}
#endif
void mpack_expect_str_match(mpack_reader_t* reader, const char* str, size_t len) {
mpack_assert(str != NULL, "str cannot be NULL");
// expect a str the correct length
if (len > UINT32_MAX)
mpack_reader_flag_error(reader, mpack_error_type);
mpack_expect_str_length(reader, (uint32_t)len);
if (mpack_reader_error(reader))
return;
mpack_reader_track_bytes(reader, len);
// check each byte one by one (matched strings are likely to be very small)
for (; len > 0; --len) {
if (mpack_expect_native_u8(reader) != *str++) {
mpack_reader_flag_error(reader, mpack_error_type);
return;
}
}
mpack_done_str(reader);
}
void mpack_expect_tag(mpack_reader_t* reader, mpack_tag_t expected) {
mpack_tag_t actual = mpack_read_tag(reader);
if (!mpack_tag_equal(actual, expected))
mpack_reader_flag_error(reader, mpack_error_type);
}
#ifdef MPACK_MALLOC
char* mpack_expect_bin_alloc(mpack_reader_t* reader, size_t maxsize, size_t* size) {
mpack_assert(size != NULL, "size cannot be NULL");
*size = 0;
if (maxsize > UINT32_MAX)
maxsize = UINT32_MAX;
size_t length = mpack_expect_bin_max(reader, (uint32_t)maxsize);
if (mpack_reader_error(reader))
return NULL;
char* data = mpack_read_bytes_alloc(reader, length);
mpack_done_bin(reader);
if (data)
*size = length;
return data;
}
#endif
#if MPACK_EXTENSIONS && defined(MPACK_MALLOC)
char* mpack_expect_ext_alloc(mpack_reader_t* reader, int8_t* type, size_t maxsize, size_t* size) {
mpack_assert(size != NULL, "size cannot be NULL");
*size = 0;
if (maxsize > UINT32_MAX)
maxsize = UINT32_MAX;
size_t length = mpack_expect_ext_max(reader, type, (uint32_t)maxsize);
if (mpack_reader_error(reader))
return NULL;
char* data = mpack_read_bytes_alloc(reader, length);
mpack_done_ext(reader);
if (data) {
*size = length;
} else {
*type = 0;
}
return data;
}
#endif
size_t mpack_expect_enum(mpack_reader_t* reader, const char* strings[], size_t count) {
// read the string in-place
size_t keylen = mpack_expect_str(reader);
const char* key = mpack_read_bytes_inplace(reader, keylen);
mpack_done_str(reader);
if (mpack_reader_error(reader) != mpack_ok)
return count;
// find what key it matches
for (size_t i = 0; i < count; ++i) {
const char* other = strings[i];
size_t otherlen = mpack_strlen(other);
if (keylen == otherlen && mpack_memcmp(key, other, keylen) == 0)
return i;
}
// no matches
mpack_reader_flag_error(reader, mpack_error_type);
return count;
}
size_t mpack_expect_enum_optional(mpack_reader_t* reader, const char* strings[], size_t count) {
if (mpack_reader_error(reader) != mpack_ok)
return count;
mpack_assert(count != 0, "count cannot be zero; no strings are valid!");
mpack_assert(strings != NULL, "strings cannot be NULL");
// the key is only recognized if it is a string
if (mpack_peek_tag(reader).type != mpack_type_str) {
mpack_discard(reader);
return count;
}
// read the string in-place
size_t keylen = mpack_expect_str(reader);
const char* key = mpack_read_bytes_inplace(reader, keylen);
mpack_done_str(reader);
if (mpack_reader_error(reader) != mpack_ok)
return count;
// find what key it matches
for (size_t i = 0; i < count; ++i) {
const char* other = strings[i];
size_t otherlen = mpack_strlen(other);
if (keylen == otherlen && mpack_memcmp(key, other, keylen) == 0)
return i;
}
// no matches
return count;
}
size_t mpack_expect_key_uint(mpack_reader_t* reader, bool found[], size_t count) {
if (mpack_reader_error(reader) != mpack_ok)
return count;
if (count == 0) {
mpack_break("count cannot be zero; no keys are valid!");
mpack_reader_flag_error(reader, mpack_error_bug);
return count;
}
mpack_assert(found != NULL, "found cannot be NULL");
// the key is only recognized if it is an unsigned int
if (mpack_peek_tag(reader).type != mpack_type_uint) {
mpack_discard(reader);
return count;
}
// read the key
uint64_t value = mpack_expect_u64(reader);
if (mpack_reader_error(reader) != mpack_ok)
return count;
// unrecognized keys are fine, we just return count
if (value >= count)
return count;
// check if this key is a duplicate
if (found[value]) {
mpack_reader_flag_error(reader, mpack_error_invalid);
return count;
}
found[value] = true;
return (size_t)value;
}
size_t mpack_expect_key_cstr(mpack_reader_t* reader, const char* keys[], bool found[], size_t count) {
size_t i = mpack_expect_enum_optional(reader, keys, count);
// unrecognized keys are fine, we just return count
if (i == count)
return count;
// check if this key is a duplicate
mpack_assert(found != NULL, "found cannot be NULL");
if (found[i]) {
mpack_reader_flag_error(reader, mpack_error_invalid);
return count;
}
found[i] = true;
return i;
}
#endif
/* mpack/mpack-node.c.c */
#define MPACK_INTERNAL 1
/* #include "mpack-node.h" */
#if MPACK_NODE
MPACK_STATIC_INLINE const char* mpack_node_data_unchecked(mpack_node_t node) {
mpack_assert(mpack_node_error(node) == mpack_ok, "tree is in an error state!");
mpack_type_t type = node.data->type;
MPACK_UNUSED(type);
#if MPACK_EXTENSIONS
mpack_assert(type == mpack_type_str || type == mpack_type_bin || type == mpack_type_ext,
"node of type %i (%s) is not a data type!", type, mpack_type_to_string(type));
#else
mpack_assert(type == mpack_type_str || type == mpack_type_bin,
"node of type %i (%s) is not a data type!", type, mpack_type_to_string(type));
#endif
return node.tree->data + node.data->value.offset;
}
#if MPACK_EXTENSIONS
MPACK_STATIC_INLINE int8_t mpack_node_exttype_unchecked(mpack_node_t node) {
mpack_assert(mpack_node_error(node) == mpack_ok, "tree is in an error state!");
mpack_type_t type = node.data->type;
MPACK_UNUSED(type);
mpack_assert(type == mpack_type_ext, "node of type %i (%s) is not an ext type!",
type, mpack_type_to_string(type));
// the exttype of an ext node is stored in the byte preceding the data
return mpack_load_i8(mpack_node_data_unchecked(node) - 1);
}
#endif
/*
* Tree Parsing
*/
#ifdef MPACK_MALLOC
// fix up the alloc size to make sure it exactly fits the
// maximum number of nodes it can contain (the allocator will
// waste it back anyway, but we round it down just in case)
#define MPACK_NODES_PER_PAGE \
((MPACK_NODE_PAGE_SIZE - sizeof(mpack_tree_page_t)) / sizeof(mpack_node_data_t) + 1)
#define MPACK_PAGE_ALLOC_SIZE \
(sizeof(mpack_tree_page_t) + sizeof(mpack_node_data_t) * (MPACK_NODES_PER_PAGE - 1))
#endif
#ifdef MPACK_MALLOC
/*
* Fills the tree until we have at least enough bytes for the current node.
*/
static bool mpack_tree_reserve_fill(mpack_tree_t* tree) {
mpack_assert(tree->parser.state == mpack_tree_parse_state_in_progress);
size_t bytes = tree->parser.current_node_reserved;
mpack_assert(bytes > tree->parser.possible_nodes_left,
"there are already enough bytes! call mpack_tree_ensure() instead.");
mpack_log("filling to reserve %i bytes\n", (int)bytes);
// if the necessary bytes would put us over the maximum tree
// size, fail right away.
// TODO: check for overflow?
if (tree->data_length + bytes > tree->max_size) {
mpack_tree_flag_error(tree, mpack_error_too_big);
return false;
}
// we'll need a read function to fetch more data. if there's
// no read function, the data should contain an entire message
// (or messages), so we flag it as invalid.
if (tree->read_fn == NULL) {
mpack_log("tree has no read function!\n");
mpack_tree_flag_error(tree, mpack_error_invalid);
return false;
}
// expand the buffer if needed
if (tree->data_length + bytes > tree->buffer_capacity) {
// TODO: check for overflow?
size_t new_capacity = (tree->buffer_capacity == 0) ? MPACK_BUFFER_SIZE : tree->buffer_capacity;
while (new_capacity < tree->data_length + bytes)
new_capacity *= 2;
if (new_capacity > tree->max_size)
new_capacity = tree->max_size;
mpack_log("expanding buffer from %i to %i\n", (int)tree->buffer_capacity, (int)new_capacity);
char* new_buffer;
if (tree->buffer == NULL)
new_buffer = (char*)MPACK_MALLOC(new_capacity);
else
new_buffer = (char*)mpack_realloc(tree->buffer, tree->data_length, new_capacity);
if (new_buffer == NULL) {
mpack_tree_flag_error(tree, mpack_error_memory);
return false;
}
tree->data = new_buffer;
tree->buffer = new_buffer;
tree->buffer_capacity = new_capacity;
}
// request as much data as possible, looping until we have
// all the data we need
do {
size_t read = tree->read_fn(tree, tree->buffer + tree->data_length, tree->buffer_capacity - tree->data_length);
// If the fill function encounters an error, it should flag an error on
// the tree.
if (mpack_tree_error(tree) != mpack_ok)
return false;
// We guard against fill functions that return -1 just in case.
if (read == (size_t)(-1)) {
mpack_tree_flag_error(tree, mpack_error_io);
return false;
}
// If the fill function returns 0, the data is not available yet. We
// return false to stop parsing the current node.
if (read == 0) {
mpack_log("not enough data.\n");
return false;
}
mpack_log("read %u more bytes\n", (uint32_t)read);
tree->data_length += read;
tree->parser.possible_nodes_left += read;
} while (tree->parser.possible_nodes_left < bytes);
return true;
}
#endif
/*
* Ensures there are enough additional bytes in the tree for the current node
* (including reserved bytes for the children of this node, and in addition to
* the reserved bytes for children of previous compound nodes), reading more
* data if needed.
*
* extra_bytes is the number of additional bytes to reserve for the current
* node beyond the type byte (since one byte is already reserved for each node
* by its parent array or map.)
*
* This may reallocate the tree, which means the tree->data pointer may change!
*
* Returns false if not enough bytes could be read.
*/
MPACK_STATIC_INLINE bool mpack_tree_reserve_bytes(mpack_tree_t* tree, size_t extra_bytes) {
mpack_assert(tree->parser.state == mpack_tree_parse_state_in_progress);
// We guard against overflow here. A compound type could declare more than
// UINT32_MAX contents which overflows SIZE_MAX on 32-bit platforms. We
// flag mpack_error_invalid instead of mpack_error_too_big since it's far
// more likely that the message is corrupt than that the data is valid but
// not parseable on this architecture (see test_read_node_possible() in
// test-node.c .)
if ((uint64_t)tree->parser.current_node_reserved + (uint64_t)extra_bytes > SIZE_MAX) {
mpack_tree_flag_error(tree, mpack_error_invalid);
return false;
}
tree->parser.current_node_reserved += extra_bytes;
// Note that possible_nodes_left already accounts for reserved bytes for
// children of previous compound nodes. So even if there are hundreds of
// bytes left in the buffer, we might need to read anyway.
if (tree->parser.current_node_reserved <= tree->parser.possible_nodes_left)
return true;
#ifdef MPACK_MALLOC
return mpack_tree_reserve_fill(tree);
#else
return false;
#endif
}
MPACK_STATIC_INLINE size_t mpack_tree_parser_stack_capacity(mpack_tree_t* tree) {
#ifdef MPACK_MALLOC
return tree->parser.stack_capacity;
#else
return sizeof(tree->parser.stack) / sizeof(tree->parser.stack[0]);
#endif
}
static bool mpack_tree_push_stack(mpack_tree_t* tree, mpack_node_data_t* first_child, size_t total) {
mpack_tree_parser_t* parser = &tree->parser;
mpack_assert(parser->state == mpack_tree_parse_state_in_progress);
// No need to push empty containers
if (total == 0)
return true;
// Make sure we have enough room in the stack
if (parser->level + 1 == mpack_tree_parser_stack_capacity(tree)) {
#ifdef MPACK_MALLOC
size_t new_capacity = parser->stack_capacity * 2;
mpack_log("growing parse stack to capacity %i\n", (int)new_capacity);
// Replace the stack-allocated parsing stack
if (!parser->stack_owned) {
mpack_level_t* new_stack = (mpack_level_t*)MPACK_MALLOC(sizeof(mpack_level_t) * new_capacity);
if (!new_stack) {
mpack_tree_flag_error(tree, mpack_error_memory);
return false;
}
mpack_memcpy(new_stack, parser->stack, sizeof(mpack_level_t) * parser->stack_capacity);
parser->stack = new_stack;
parser->stack_owned = true;
// Realloc the allocated parsing stack
} else {
mpack_level_t* new_stack = (mpack_level_t*)mpack_realloc(parser->stack,
sizeof(mpack_level_t) * parser->stack_capacity, sizeof(mpack_level_t) * new_capacity);
if (!new_stack) {
mpack_tree_flag_error(tree, mpack_error_memory);
return false;
}
parser->stack = new_stack;
}
parser->stack_capacity = new_capacity;
#else
mpack_tree_flag_error(tree, mpack_error_too_big);
return false;
#endif
}
// Push the contents of this node onto the parsing stack
++parser->level;
parser->stack[parser->level].child = first_child;
parser->stack[parser->level].left = total;
return true;
}
static bool mpack_tree_parse_children(mpack_tree_t* tree, mpack_node_data_t* node) {
mpack_tree_parser_t* parser = &tree->parser;
mpack_assert(parser->state == mpack_tree_parse_state_in_progress);
mpack_type_t type = node->type;
size_t total = node->len;
// Calculate total elements to read
if (type == mpack_type_map) {
if ((uint64_t)total * 2 > SIZE_MAX) {
mpack_tree_flag_error(tree, mpack_error_too_big);
return false;
}
total *= 2;
}
// Make sure we are under our total node limit (TODO can this overflow?)
tree->node_count += total;
if (tree->node_count > tree->max_nodes) {
mpack_tree_flag_error(tree, mpack_error_too_big);
return false;
}
// Each node is at least one byte. Count these bytes now to make
// sure there is enough data left.
if (!mpack_tree_reserve_bytes(tree, total))
return false;
// If there are enough nodes left in the current page, no need to grow
if (total <= parser->nodes_left) {
node->value.children = parser->nodes;
parser->nodes += total;
parser->nodes_left -= total;
} else {
#ifdef MPACK_MALLOC
// We can't grow if we're using a fixed pool (i.e. we didn't start with a page)
if (!tree->next) {
mpack_tree_flag_error(tree, mpack_error_too_big);
return false;
}
// Otherwise we need to grow, and the node's children need to be contiguous.
// This is a heuristic to decide whether we should waste the remaining space
// in the current page and start a new one, or give the children their
// own page. With a fraction of 1/8, this causes at most 12% additional
// waste. Note that reducing this too much causes less cache coherence and
// more malloc() overhead due to smaller allocations, so there's a tradeoff
// here. This heuristic could use some improvement, especially with custom
// page sizes.
mpack_tree_page_t* page;
if (total > MPACK_NODES_PER_PAGE || parser->nodes_left > MPACK_NODES_PER_PAGE / 8) {
// TODO: this should check for overflow
page = (mpack_tree_page_t*)MPACK_MALLOC(
sizeof(mpack_tree_page_t) + sizeof(mpack_node_data_t) * (total - 1));
if (page == NULL) {
mpack_tree_flag_error(tree, mpack_error_memory);
return false;
}
mpack_log("allocated seperate page %p for %i children, %i left in page of %i total\n",
page, (int)total, (int)parser->nodes_left, (int)MPACK_NODES_PER_PAGE);
node->value.children = page->nodes;
} else {
page = (mpack_tree_page_t*)MPACK_MALLOC(MPACK_PAGE_ALLOC_SIZE);
if (page == NULL) {
mpack_tree_flag_error(tree, mpack_error_memory);
return false;
}
mpack_log("allocated new page %p for %i children, wasting %i in page of %i total\n",
page, (int)total, (int)parser->nodes_left, (int)MPACK_NODES_PER_PAGE);
node->value.children = page->nodes;
parser->nodes = page->nodes + total;
parser->nodes_left = MPACK_NODES_PER_PAGE - total;
}
page->next = tree->next;
tree->next = page;
#else
// We can't grow if we don't have an allocator
mpack_tree_flag_error(tree, mpack_error_too_big);
return false;
#endif
}
return mpack_tree_push_stack(tree, node->value.children, total);
}
static bool mpack_tree_parse_bytes(mpack_tree_t* tree, mpack_node_data_t* node) {
node->value.offset = tree->size + tree->parser.current_node_reserved + 1;
return mpack_tree_reserve_bytes(tree, node->len);
}
#if MPACK_EXTENSIONS
static bool mpack_tree_parse_ext(mpack_tree_t* tree, mpack_node_data_t* node) {
// reserve space for exttype
tree->parser.current_node_reserved += sizeof(int8_t);
node->type = mpack_type_ext;
return mpack_tree_parse_bytes(tree, node);
}
#endif
static bool mpack_tree_parse_node_contents(mpack_tree_t* tree, mpack_node_data_t* node) {
mpack_assert(tree->parser.state == mpack_tree_parse_state_in_progress);
mpack_assert(node != NULL, "null node?");
// read the type. we've already accounted for this byte in
// possible_nodes_left, so we already know it is in bounds, and we don't
// need to reserve it for this node.
mpack_assert(tree->data_length > tree->size);
uint8_t type = mpack_load_u8(tree->data + tree->size);
mpack_log("node type %x\n", type);
tree->parser.current_node_reserved = 0;
// as with mpack_read_tag(), the fastest way to parse a node is to switch
// on the first byte, and to explicitly list every possible byte. we switch
// on the first four bits in size-optimized builds.
#if MPACK_OPTIMIZE_FOR_SIZE
switch (type >> 4) {
// positive fixnum
case 0x0: case 0x1: case 0x2: case 0x3:
case 0x4: case 0x5: case 0x6: case 0x7:
node->type = mpack_type_uint;
node->value.u = type;
return true;
// negative fixnum
case 0xe: case 0xf:
node->type = mpack_type_int;
node->value.i = (int8_t)type;
return true;
// fixmap
case 0x8:
node->type = mpack_type_map;
node->len = (uint32_t)(type & ~0xf0);
return mpack_tree_parse_children(tree, node);
// fixarray
case 0x9:
node->type = mpack_type_array;
node->len = (uint32_t)(type & ~0xf0);
return mpack_tree_parse_children(tree, node);
// fixstr
case 0xa: case 0xb:
node->type = mpack_type_str;
node->len = (uint32_t)(type & ~0xe0);
return mpack_tree_parse_bytes(tree, node);
// not one of the common infix types
default:
break;
}
#endif
switch (type) {
#if !MPACK_OPTIMIZE_FOR_SIZE
// positive fixnum
case 0x00: case 0x01: case 0x02: case 0x03: case 0x04: case 0x05: case 0x06: case 0x07:
case 0x08: case 0x09: case 0x0a: case 0x0b: case 0x0c: case 0x0d: case 0x0e: case 0x0f:
case 0x10: case 0x11: case 0x12: case 0x13: case 0x14: case 0x15: case 0x16: case 0x17:
case 0x18: case 0x19: case 0x1a: case 0x1b: case 0x1c: case 0x1d: case 0x1e: case 0x1f:
case 0x20: case 0x21: case 0x22: case 0x23: case 0x24: case 0x25: case 0x26: case 0x27:
case 0x28: case 0x29: case 0x2a: case 0x2b: case 0x2c: case 0x2d: case 0x2e: case 0x2f:
case 0x30: case 0x31: case 0x32: case 0x33: case 0x34: case 0x35: case 0x36: case 0x37:
case 0x38: case 0x39: case 0x3a: case 0x3b: case 0x3c: case 0x3d: case 0x3e: case 0x3f:
case 0x40: case 0x41: case 0x42: case 0x43: case 0x44: case 0x45: case 0x46: case 0x47:
case 0x48: case 0x49: case 0x4a: case 0x4b: case 0x4c: case 0x4d: case 0x4e: case 0x4f:
case 0x50: case 0x51: case 0x52: case 0x53: case 0x54: case 0x55: case 0x56: case 0x57:
case 0x58: case 0x59: case 0x5a: case 0x5b: case 0x5c: case 0x5d: case 0x5e: case 0x5f:
case 0x60: case 0x61: case 0x62: case 0x63: case 0x64: case 0x65: case 0x66: case 0x67:
case 0x68: case 0x69: case 0x6a: case 0x6b: case 0x6c: case 0x6d: case 0x6e: case 0x6f:
case 0x70: case 0x71: case 0x72: case 0x73: case 0x74: case 0x75: case 0x76: case 0x77:
case 0x78: case 0x79: case 0x7a: case 0x7b: case 0x7c: case 0x7d: case 0x7e: case 0x7f:
node->type = mpack_type_uint;
node->value.u = type;
return true;
// negative fixnum
case 0xe0: case 0xe1: case 0xe2: case 0xe3: case 0xe4: case 0xe5: case 0xe6: case 0xe7:
case 0xe8: case 0xe9: case 0xea: case 0xeb: case 0xec: case 0xed: case 0xee: case 0xef:
case 0xf0: case 0xf1: case 0xf2: case 0xf3: case 0xf4: case 0xf5: case 0xf6: case 0xf7:
case 0xf8: case 0xf9: case 0xfa: case 0xfb: case 0xfc: case 0xfd: case 0xfe: case 0xff:
node->type = mpack_type_int;
node->value.i = (int8_t)type;
return true;
// fixmap
case 0x80: case 0x81: case 0x82: case 0x83: case 0x84: case 0x85: case 0x86: case 0x87:
case 0x88: case 0x89: case 0x8a: case 0x8b: case 0x8c: case 0x8d: case 0x8e: case 0x8f:
node->type = mpack_type_map;
node->len = (uint32_t)(type & ~0xf0);
return mpack_tree_parse_children(tree, node);
// fixarray
case 0x90: case 0x91: case 0x92: case 0x93: case 0x94: case 0x95: case 0x96: case 0x97:
case 0x98: case 0x99: case 0x9a: case 0x9b: case 0x9c: case 0x9d: case 0x9e: case 0x9f:
node->type = mpack_type_array;
node->len = (uint32_t)(type & ~0xf0);
return mpack_tree_parse_children(tree, node);
// fixstr
case 0xa0: case 0xa1: case 0xa2: case 0xa3: case 0xa4: case 0xa5: case 0xa6: case 0xa7:
case 0xa8: case 0xa9: case 0xaa: case 0xab: case 0xac: case 0xad: case 0xae: case 0xaf:
case 0xb0: case 0xb1: case 0xb2: case 0xb3: case 0xb4: case 0xb5: case 0xb6: case 0xb7:
case 0xb8: case 0xb9: case 0xba: case 0xbb: case 0xbc: case 0xbd: case 0xbe: case 0xbf:
node->type = mpack_type_str;
node->len = (uint32_t)(type & ~0xe0);
return mpack_tree_parse_bytes(tree, node);
#endif
// nil
case 0xc0:
node->type = mpack_type_nil;
return true;
// bool
case 0xc2: case 0xc3:
node->type = mpack_type_bool;
node->value.b = type & 1;
return true;
// bin8
case 0xc4:
node->type = mpack_type_bin;
if (!mpack_tree_reserve_bytes(tree, sizeof(uint8_t)))
return false;
node->len = mpack_load_u8(tree->data + tree->size + 1);
return mpack_tree_parse_bytes(tree, node);
// bin16
case 0xc5:
node->type = mpack_type_bin;
if (!mpack_tree_reserve_bytes(tree, sizeof(uint16_t)))
return false;
node->len = mpack_load_u16(tree->data + tree->size + 1);
return mpack_tree_parse_bytes(tree, node);
// bin32
case 0xc6:
node->type = mpack_type_bin;
if (!mpack_tree_reserve_bytes(tree, sizeof(uint32_t)))
return false;
node->len = mpack_load_u32(tree->data + tree->size + 1);
return mpack_tree_parse_bytes(tree, node);
#if MPACK_EXTENSIONS
// ext8
case 0xc7:
if (!mpack_tree_reserve_bytes(tree, sizeof(uint8_t)))
return false;
node->len = mpack_load_u8(tree->data + tree->size + 1);
return mpack_tree_parse_ext(tree, node);
// ext16
case 0xc8:
if (!mpack_tree_reserve_bytes(tree, sizeof(uint16_t)))
return false;
node->len = mpack_load_u16(tree->data + tree->size + 1);
return mpack_tree_parse_ext(tree, node);
// ext32
case 0xc9:
if (!mpack_tree_reserve_bytes(tree, sizeof(uint32_t)))
return false;
node->len = mpack_load_u32(tree->data + tree->size + 1);
return mpack_tree_parse_ext(tree, node);
#endif
// float
case 0xca:
if (!mpack_tree_reserve_bytes(tree, sizeof(float)))
return false;
node->value.f = mpack_load_float(tree->data + tree->size + 1);
node->type = mpack_type_float;
return true;
// double
case 0xcb:
if (!mpack_tree_reserve_bytes(tree, sizeof(double)))
return false;
node->value.d = mpack_load_double(tree->data + tree->size + 1);
node->type = mpack_type_double;
return true;
// uint8
case 0xcc:
node->type = mpack_type_uint;
if (!mpack_tree_reserve_bytes(tree, sizeof(uint8_t)))
return false;
node->value.u = mpack_load_u8(tree->data + tree->size + 1);
return true;
// uint16
case 0xcd:
node->type = mpack_type_uint;
if (!mpack_tree_reserve_bytes(tree, sizeof(uint16_t)))
return false;
node->value.u = mpack_load_u16(tree->data + tree->size + 1);
return true;
// uint32
case 0xce:
node->type = mpack_type_uint;
if (!mpack_tree_reserve_bytes(tree, sizeof(uint32_t)))
return false;
node->value.u = mpack_load_u32(tree->data + tree->size + 1);
return true;
// uint64
case 0xcf:
node->type = mpack_type_uint;
if (!mpack_tree_reserve_bytes(tree, sizeof(uint64_t)))
return false;
node->value.u = mpack_load_u64(tree->data + tree->size + 1);
return true;
// int8
case 0xd0:
node->type = mpack_type_int;
if (!mpack_tree_reserve_bytes(tree, sizeof(int8_t)))
return false;
node->value.i = mpack_load_i8(tree->data + tree->size + 1);
return true;
// int16
case 0xd1:
node->type = mpack_type_int;
if (!mpack_tree_reserve_bytes(tree, sizeof(int16_t)))
return false;
node->value.i = mpack_load_i16(tree->data + tree->size + 1);
return true;
// int32
case 0xd2:
node->type = mpack_type_int;
if (!mpack_tree_reserve_bytes(tree, sizeof(int32_t)))
return false;
node->value.i = mpack_load_i32(tree->data + tree->size + 1);
return true;
// int64
case 0xd3:
node->type = mpack_type_int;
if (!mpack_tree_reserve_bytes(tree, sizeof(int64_t)))
return false;
node->value.i = mpack_load_i64(tree->data + tree->size + 1);
return true;
#if MPACK_EXTENSIONS
// fixext1
case 0xd4:
node->len = 1;
return mpack_tree_parse_ext(tree, node);
// fixext2
case 0xd5:
node->len = 2;
return mpack_tree_parse_ext(tree, node);
// fixext4
case 0xd6:
node->len = 4;
return mpack_tree_parse_ext(tree, node);
// fixext8
case 0xd7:
node->len = 8;
return mpack_tree_parse_ext(tree, node);
// fixext16
case 0xd8:
node->len = 16;
return mpack_tree_parse_ext(tree, node);
#endif
// str8
case 0xd9:
if (!mpack_tree_reserve_bytes(tree, sizeof(uint8_t)))
return false;
node->len = mpack_load_u8(tree->data + tree->size + 1);
node->type = mpack_type_str;
return mpack_tree_parse_bytes(tree, node);
// str16
case 0xda:
if (!mpack_tree_reserve_bytes(tree, sizeof(uint16_t)))
return false;
node->len = mpack_load_u16(tree->data + tree->size + 1);
node->type = mpack_type_str;
return mpack_tree_parse_bytes(tree, node);
// str32
case 0xdb:
if (!mpack_tree_reserve_bytes(tree, sizeof(uint32_t)))
return false;
node->len = mpack_load_u32(tree->data + tree->size + 1);
node->type = mpack_type_str;
return mpack_tree_parse_bytes(tree, node);
// array16
case 0xdc:
if (!mpack_tree_reserve_bytes(tree, sizeof(uint16_t)))
return false;
node->len = mpack_load_u16(tree->data + tree->size + 1);
node->type = mpack_type_array;
return mpack_tree_parse_children(tree, node);
// array32
case 0xdd:
if (!mpack_tree_reserve_bytes(tree, sizeof(uint32_t)))
return false;
node->len = mpack_load_u32(tree->data + tree->size + 1);
node->type = mpack_type_array;
return mpack_tree_parse_children(tree, node);
// map16
case 0xde:
if (!mpack_tree_reserve_bytes(tree, sizeof(uint16_t)))
return false;
node->len = mpack_load_u16(tree->data + tree->size + 1);
node->type = mpack_type_map;
return mpack_tree_parse_children(tree, node);
// map32
case 0xdf:
if (!mpack_tree_reserve_bytes(tree, sizeof(uint32_t)))
return false;
node->len = mpack_load_u32(tree->data + tree->size + 1);
node->type = mpack_type_map;
return mpack_tree_parse_children(tree, node);
// reserved
case 0xc1:
mpack_tree_flag_error(tree, mpack_error_invalid);
return false;
#if !MPACK_EXTENSIONS
// ext
case 0xc7: // fallthrough
case 0xc8: // fallthrough
case 0xc9: // fallthrough
// fixext
case 0xd4: // fallthrough
case 0xd5: // fallthrough
case 0xd6: // fallthrough
case 0xd7: // fallthrough
case 0xd8:
mpack_tree_flag_error(tree, mpack_error_unsupported);
return false;
#endif
#if MPACK_OPTIMIZE_FOR_SIZE
// any other bytes should have been handled by the infix switch
default:
break;
#endif
}
mpack_assert(0, "unreachable");
return false;
}
static bool mpack_tree_parse_node(mpack_tree_t* tree, mpack_node_data_t* node) {
mpack_log("parsing a node at position %i in level %i\n",
(int)tree->size, (int)tree->parser.level);
if (!mpack_tree_parse_node_contents(tree, node)) {
mpack_log("node parsing returned false\n");
return false;
}
tree->parser.possible_nodes_left -= tree->parser.current_node_reserved;
// The reserve for the current node does not include the initial byte
// previously reserved as part of its parent.
size_t node_size = tree->parser.current_node_reserved + 1;
// If the parsed type is a map or array, the reserve includes one byte for
// each child. We want to subtract these out of possible_nodes_left, but
// not out of the current size of the tree.
if (node->type == mpack_type_array)
node_size -= node->len;
else if (node->type == mpack_type_map)
node_size -= node->len * 2;
tree->size += node_size;
mpack_log("parsed a node of type %s of %i bytes and "
"%i additional bytes reserved for children.\n",
mpack_type_to_string(node->type), (int)node_size,
(int)tree->parser.current_node_reserved + 1 - (int)node_size);
return true;
}
/*
* We read nodes in a loop instead of recursively for maximum performance. The
* stack holds the amount of children left to read in each level of the tree.
* Parsing can pause and resume when more data becomes available.
*/
static bool mpack_tree_continue_parsing(mpack_tree_t* tree) {
if (mpack_tree_error(tree) != mpack_ok)
return false;
mpack_tree_parser_t* parser = &tree->parser;
mpack_assert(parser->state == mpack_tree_parse_state_in_progress);
mpack_log("parsing tree elements, %i bytes in buffer\n", (int)tree->data_length);
// we loop parsing nodes until the parse stack is empty. we break
// by returning out of the function.
while (true) {
mpack_node_data_t* node = parser->stack[parser->level].child;
size_t level = parser->level;
if (!mpack_tree_parse_node(tree, node))
return false;
--parser->stack[level].left;
++parser->stack[level].child;
mpack_assert(mpack_tree_error(tree) == mpack_ok,
"mpack_tree_parse_node() should have returned false due to error!");
// pop empty stack levels, exiting the outer loop when the stack is empty.
// (we could tail-optimize containers by pre-emptively popping empty
// stack levels before reading the new element, this way we wouldn't
// have to loop. but we eventually want to use the parse stack to give
// better error messages that contain the location of the error, so
// it needs to be complete.)
while (parser->stack[parser->level].left == 0) {
if (parser->level == 0)
return true;
--parser->level;
}
}
}
static void mpack_tree_cleanup(mpack_tree_t* tree) {
MPACK_UNUSED(tree);
#ifdef MPACK_MALLOC
if (tree->parser.stack_owned) {
MPACK_FREE(tree->parser.stack);
tree->parser.stack = NULL;
tree->parser.stack_owned = false;
}
mpack_tree_page_t* page = tree->next;
while (page != NULL) {
mpack_tree_page_t* next = page->next;
mpack_log("freeing page %p\n", page);
MPACK_FREE(page);
page = next;
}
tree->next = NULL;
#endif
}
static bool mpack_tree_parse_start(mpack_tree_t* tree) {
if (mpack_tree_error(tree) != mpack_ok)
return false;
mpack_tree_parser_t* parser = &tree->parser;
mpack_assert(parser->state != mpack_tree_parse_state_in_progress,
"previous parsing was not finished!");
if (parser->state == mpack_tree_parse_state_parsed)
mpack_tree_cleanup(tree);
mpack_log("starting parse\n");
tree->parser.state = mpack_tree_parse_state_in_progress;
tree->parser.current_node_reserved = 0;
// check if we previously parsed a tree
if (tree->size > 0) {
#ifdef MPACK_MALLOC
// if we're buffered, move the remaining data back to the
// start of the buffer
// TODO: This is not ideal performance-wise. We should only move data
// when we need to call the fill function.
// TODO: We could consider shrinking the buffer here, especially if we
// determine that the fill function is providing less than a quarter of
// the buffer size or if messages take up less than a quarter of the
// buffer size. Maybe this should be configurable.
if (tree->buffer != NULL) {
mpack_memmove(tree->buffer, tree->buffer + tree->size, tree->data_length - tree->size);
}
else
#endif
// otherwise advance past the parsed data
{
tree->data += tree->size;
}
tree->data_length -= tree->size;
tree->size = 0;
tree->node_count = 0;
}
// make sure we have at least one byte available before allocating anything
parser->possible_nodes_left = tree->data_length;
if (!mpack_tree_reserve_bytes(tree, sizeof(uint8_t))) {
tree->parser.state = mpack_tree_parse_state_not_started;
return false;
}
mpack_log("parsing tree at %p starting with byte %x\n", tree->data, (uint8_t)tree->data[0]);
parser->possible_nodes_left -= 1;
tree->node_count = 1;
#ifdef MPACK_MALLOC
parser->stack = parser->stack_local;
parser->stack_owned = false;
parser->stack_capacity = sizeof(parser->stack_local) / sizeof(*parser->stack_local);
if (tree->pool == NULL) {
// allocate first page
mpack_tree_page_t* page = (mpack_tree_page_t*)MPACK_MALLOC(MPACK_PAGE_ALLOC_SIZE);
mpack_log("allocated initial page %p of size %i count %i\n",
page, (int)MPACK_PAGE_ALLOC_SIZE, (int)MPACK_NODES_PER_PAGE);
if (page == NULL) {
tree->error = mpack_error_memory;
return false;
}
page->next = NULL;
tree->next = page;
parser->nodes = page->nodes;
parser->nodes_left = MPACK_NODES_PER_PAGE;
}
else
#endif
{
// otherwise use the provided pool
mpack_assert(tree->pool != NULL, "no pool provided?");
parser->nodes = tree->pool;
parser->nodes_left = tree->pool_count;
}
tree->root = parser->nodes;
++parser->nodes;
--parser->nodes_left;
parser->level = 0;
parser->stack[0].child = tree->root;
parser->stack[0].left = 1;
return true;
}
void mpack_tree_parse(mpack_tree_t* tree) {
if (mpack_tree_error(tree) != mpack_ok)
return;
if (tree->parser.state != mpack_tree_parse_state_in_progress) {
if (!mpack_tree_parse_start(tree)) {
mpack_tree_flag_error(tree, (tree->read_fn == NULL) ?
mpack_error_invalid : mpack_error_io);
return;
}
}
if (!mpack_tree_continue_parsing(tree)) {
if (mpack_tree_error(tree) != mpack_ok)
return;
// We're parsing synchronously on a blocking fill function. If we
// didn't completely finish parsing the tree, it's an error.
mpack_log("tree parsing incomplete. flagging error.\n");
mpack_tree_flag_error(tree, (tree->read_fn == NULL) ?
mpack_error_invalid : mpack_error_io);
return;
}
mpack_assert(mpack_tree_error(tree) == mpack_ok);
mpack_assert(tree->parser.level == 0);
tree->parser.state = mpack_tree_parse_state_parsed;
mpack_log("parsed tree of %i bytes, %i bytes left\n", (int)tree->size, (int)tree->parser.possible_nodes_left);
mpack_log("%i nodes in final page\n", (int)tree->parser.nodes_left);
}
bool mpack_tree_try_parse(mpack_tree_t* tree) {
if (mpack_tree_error(tree) != mpack_ok)
return false;
if (tree->parser.state != mpack_tree_parse_state_in_progress)
if (!mpack_tree_parse_start(tree))
return false;
if (!mpack_tree_continue_parsing(tree))
return false;
mpack_assert(mpack_tree_error(tree) == mpack_ok);
mpack_assert(tree->parser.level == 0);
tree->parser.state = mpack_tree_parse_state_parsed;
return true;
}
/*
* Tree functions
*/
mpack_node_t mpack_tree_root(mpack_tree_t* tree) {
if (mpack_tree_error(tree) != mpack_ok)
return mpack_tree_nil_node(tree);
// We check that a tree was parsed successfully and assert if not. You must
// call mpack_tree_parse() (or mpack_tree_try_parse() with a success
// result) in order to access the root node.
if (tree->parser.state != mpack_tree_parse_state_parsed) {
mpack_break("Tree has not been parsed! "
"Did you call mpack_tree_parse() or mpack_tree_try_parse()?");
mpack_tree_flag_error(tree, mpack_error_bug);
return mpack_tree_nil_node(tree);
}
return mpack_node(tree, tree->root);
}
static void mpack_tree_init_clear(mpack_tree_t* tree) {
mpack_memset(tree, 0, sizeof(*tree));
tree->nil_node.type = mpack_type_nil;
tree->missing_node.type = mpack_type_missing;
tree->max_size = SIZE_MAX;
tree->max_nodes = SIZE_MAX;
}
#ifdef MPACK_MALLOC
void mpack_tree_init_data(mpack_tree_t* tree, const char* data, size_t length) {
mpack_tree_init_clear(tree);
MPACK_STATIC_ASSERT(MPACK_NODE_PAGE_SIZE >= sizeof(mpack_tree_page_t),
"MPACK_NODE_PAGE_SIZE is too small");
MPACK_STATIC_ASSERT(MPACK_PAGE_ALLOC_SIZE <= MPACK_NODE_PAGE_SIZE,
"incorrect page rounding?");
tree->data = data;
tree->data_length = length;
tree->pool = NULL;
tree->pool_count = 0;
tree->next = NULL;
mpack_log("===========================\n");
mpack_log("initializing tree with data of size %i\n", (int)length);
}
#endif
void mpack_tree_init_pool(mpack_tree_t* tree, const char* data, size_t length,
mpack_node_data_t* node_pool, size_t node_pool_count)
{
mpack_tree_init_clear(tree);
#ifdef MPACK_MALLOC
tree->next = NULL;
#endif
if (node_pool_count == 0) {
mpack_break("initial page has no nodes!");
mpack_tree_flag_error(tree, mpack_error_bug);
return;
}
tree->data = data;
tree->data_length = length;
tree->pool = node_pool;
tree->pool_count = node_pool_count;
mpack_log("===========================\n");
mpack_log("initializing tree with data of size %i and pool of count %i\n",
(int)length, (int)node_pool_count);
}
void mpack_tree_init_error(mpack_tree_t* tree, mpack_error_t error) {
mpack_tree_init_clear(tree);
tree->error = error;
mpack_log("===========================\n");
mpack_log("initializing tree error state %i\n", (int)error);
}
#ifdef MPACK_MALLOC
void mpack_tree_init_stream(mpack_tree_t* tree, mpack_tree_read_t read_fn, void* context,
size_t max_message_size, size_t max_message_nodes) {
mpack_tree_init_clear(tree);
tree->read_fn = read_fn;
tree->context = context;
mpack_tree_set_limits(tree, max_message_size, max_message_nodes);
tree->max_size = max_message_size;
tree->max_nodes = max_message_nodes;
mpack_log("===========================\n");
mpack_log("initializing tree with stream, max size %i max nodes %i\n",
(int)max_message_size, (int)max_message_nodes);
}
#endif
void mpack_tree_set_limits(mpack_tree_t* tree, size_t max_message_size, size_t max_message_nodes) {
mpack_assert(max_message_size > 0);
mpack_assert(max_message_nodes > 0);
tree->max_size = max_message_size;
tree->max_nodes = max_message_nodes;
}
#if MPACK_STDIO
typedef struct mpack_file_tree_t {
char* data;
size_t size;
char buffer[MPACK_BUFFER_SIZE];
} mpack_file_tree_t;
static void mpack_file_tree_teardown(mpack_tree_t* tree) {
mpack_file_tree_t* file_tree = (mpack_file_tree_t*)tree->context;
MPACK_FREE(file_tree->data);
MPACK_FREE(file_tree);
}
static bool mpack_file_tree_read(mpack_tree_t* tree, mpack_file_tree_t* file_tree, FILE* file, size_t max_bytes) {
// get the file size
errno = 0;
int error = 0;
fseek(file, 0, SEEK_END);
error |= errno;
long size = ftell(file);
error |= errno;
fseek(file, 0, SEEK_SET);
error |= errno;
// check for errors
if (error != 0 || size < 0) {
mpack_tree_init_error(tree, mpack_error_io);
return false;
}
if (size == 0) {
mpack_tree_init_error(tree, mpack_error_invalid);
return false;
}
// make sure the size is less than max_bytes
// (this mess exists to safely convert between long and size_t regardless of their widths)
if (max_bytes != 0 && (((uint64_t)LONG_MAX > (uint64_t)SIZE_MAX && size > (long)SIZE_MAX) || (size_t)size > max_bytes)) {
mpack_tree_init_error(tree, mpack_error_too_big);
return false;
}
// allocate data
file_tree->data = (char*)MPACK_MALLOC((size_t)size);
if (file_tree->data == NULL) {
mpack_tree_init_error(tree, mpack_error_memory);
return false;
}
// read the file
long total = 0;
while (total < size) {
size_t read = fread(file_tree->data + total, 1, (size_t)(size - total), file);
if (read <= 0) {
mpack_tree_init_error(tree, mpack_error_io);
MPACK_FREE(file_tree->data);
return false;
}
total += (long)read;
}
file_tree->size = (size_t)size;
return true;
}
static bool mpack_tree_file_check_max_bytes(mpack_tree_t* tree, size_t max_bytes) {
// the C STDIO family of file functions use long (e.g. ftell)
if (max_bytes > LONG_MAX) {
mpack_break("max_bytes of %" PRIu64 " is invalid, maximum is LONG_MAX", (uint64_t)max_bytes);
mpack_tree_init_error(tree, mpack_error_bug);
return false;
}
return true;
}
static void mpack_tree_init_stdfile_noclose(mpack_tree_t* tree, FILE* stdfile, size_t max_bytes) {
// allocate file tree
mpack_file_tree_t* file_tree = (mpack_file_tree_t*) MPACK_MALLOC(sizeof(mpack_file_tree_t));
if (file_tree == NULL) {
mpack_tree_init_error(tree, mpack_error_memory);
return;
}
// read all data
if (!mpack_file_tree_read(tree, file_tree, stdfile, max_bytes)) {
MPACK_FREE(file_tree);
return;
}
mpack_tree_init_data(tree, file_tree->data, file_tree->size);
mpack_tree_set_context(tree, file_tree);
mpack_tree_set_teardown(tree, mpack_file_tree_teardown);
}
void mpack_tree_init_stdfile(mpack_tree_t* tree, FILE* stdfile, size_t max_bytes, bool close_when_done) {
if (!mpack_tree_file_check_max_bytes(tree, max_bytes))
return;
mpack_tree_init_stdfile_noclose(tree, stdfile, max_bytes);
if (close_when_done)
fclose(stdfile);
}
void mpack_tree_init_filename(mpack_tree_t* tree, const char* filename, size_t max_bytes) {
if (!mpack_tree_file_check_max_bytes(tree, max_bytes))
return;
// open the file
FILE* file = fopen(filename, "rb");
if (!file) {
mpack_tree_init_error(tree, mpack_error_io);
return;
}
mpack_tree_init_stdfile(tree, file, max_bytes, true);
}
#endif
mpack_error_t mpack_tree_destroy(mpack_tree_t* tree) {
mpack_tree_cleanup(tree);
#ifdef MPACK_MALLOC
if (tree->buffer)
MPACK_FREE(tree->buffer);
#endif
if (tree->teardown)
tree->teardown(tree);
tree->teardown = NULL;
return tree->error;
}
void mpack_tree_flag_error(mpack_tree_t* tree, mpack_error_t error) {
if (tree->error == mpack_ok) {
mpack_log("tree %p setting error %i: %s\n", tree, (int)error, mpack_error_to_string(error));
tree->error = error;
if (tree->error_fn)
tree->error_fn(tree, error);
}
}
/*
* Node misc functions
*/
void mpack_node_flag_error(mpack_node_t node, mpack_error_t error) {
mpack_tree_flag_error(node.tree, error);
}
mpack_tag_t mpack_node_tag(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return mpack_tag_nil();
mpack_tag_t tag = MPACK_TAG_ZERO;
tag.type = node.data->type;
switch (node.data->type) {
case mpack_type_missing:
// If a node is missing, I don't know if it makes sense to ask for
// a tag for it. We'll return a missing tag to match the missing
// node I guess, but attempting to use the tag for anything (like
// writing it for example) will flag mpack_error_bug.
break;
case mpack_type_nil: break;
case mpack_type_bool: tag.v.b = node.data->value.b; break;
case mpack_type_float: tag.v.f = node.data->value.f; break;
case mpack_type_double: tag.v.d = node.data->value.d; break;
case mpack_type_int: tag.v.i = node.data->value.i; break;
case mpack_type_uint: tag.v.u = node.data->value.u; break;
case mpack_type_str: tag.v.l = node.data->len; break;
case mpack_type_bin: tag.v.l = node.data->len; break;
#if MPACK_EXTENSIONS
case mpack_type_ext:
tag.v.l = node.data->len;
tag.exttype = mpack_node_exttype_unchecked(node);
break;
#endif
case mpack_type_array: tag.v.n = node.data->len; break;
case mpack_type_map: tag.v.n = node.data->len; break;
default:
mpack_assert(0, "unrecognized type %i", (int)node.data->type);
break;
}
return tag;
}
#if MPACK_DEBUG && MPACK_STDIO
static void mpack_node_print_element(mpack_node_t node, mpack_print_t* print, size_t depth) {
mpack_node_data_t* data = node.data;
switch (data->type) {
case mpack_type_str:
{
mpack_print_append_cstr(print, "\"");
const char* bytes = mpack_node_data_unchecked(node);
for (size_t i = 0; i < data->len; ++i) {
char c = bytes[i];
switch (c) {
case '\n': mpack_print_append_cstr(print, "\\n"); break;
case '\\': mpack_print_append_cstr(print, "\\\\"); break;
case '"': mpack_print_append_cstr(print, "\\\""); break;
default: mpack_print_append(print, &c, 1); break;
}
}
mpack_print_append_cstr(print, "\"");
}
break;
case mpack_type_array:
mpack_print_append_cstr(print, "[\n");
for (size_t i = 0; i < data->len; ++i) {
for (size_t j = 0; j < depth + 1; ++j)
mpack_print_append_cstr(print, " ");
mpack_node_print_element(mpack_node_array_at(node, i), print, depth + 1);
if (i != data->len - 1)
mpack_print_append_cstr(print, ",");
mpack_print_append_cstr(print, "\n");
}
for (size_t i = 0; i < depth; ++i)
mpack_print_append_cstr(print, " ");
mpack_print_append_cstr(print, "]");
break;
case mpack_type_map:
mpack_print_append_cstr(print, "{\n");
for (size_t i = 0; i < data->len; ++i) {
for (size_t j = 0; j < depth + 1; ++j)
mpack_print_append_cstr(print, " ");
mpack_node_print_element(mpack_node_map_key_at(node, i), print, depth + 1);
mpack_print_append_cstr(print, ": ");
mpack_node_print_element(mpack_node_map_value_at(node, i), print, depth + 1);
if (i != data->len - 1)
mpack_print_append_cstr(print, ",");
mpack_print_append_cstr(print, "\n");
}
for (size_t i = 0; i < depth; ++i)
mpack_print_append_cstr(print, " ");
mpack_print_append_cstr(print, "}");
break;
default:
{
const char* prefix = NULL;
size_t prefix_length = 0;
if (mpack_node_type(node) == mpack_type_bin
#if MPACK_EXTENSIONS
|| mpack_node_type(node) == mpack_type_ext
#endif
) {
prefix = mpack_node_data(node);
prefix_length = mpack_node_data_len(node);
}
char buf[256];
mpack_tag_t tag = mpack_node_tag(node);
mpack_tag_debug_pseudo_json(tag, buf, sizeof(buf), prefix, prefix_length);
mpack_print_append_cstr(print, buf);
}
break;
}
}
void mpack_node_print_to_buffer(mpack_node_t node, char* buffer, size_t buffer_size) {
if (buffer_size == 0) {
mpack_assert(false, "buffer size is zero!");
return;
}
mpack_print_t print;
mpack_memset(&print, 0, sizeof(print));
print.buffer = buffer;
print.size = buffer_size;
mpack_node_print_element(node, &print, 0);
mpack_print_append(&print, "", 1); // null-terminator
mpack_print_flush(&print);
// we always make sure there's a null-terminator at the end of the buffer
// in case we ran out of space.
print.buffer[print.size - 1] = '\0';
}
void mpack_node_print_to_callback(mpack_node_t node, mpack_print_callback_t callback, void* context) {
char buffer[1024];
mpack_print_t print;
mpack_memset(&print, 0, sizeof(print));
print.buffer = buffer;
print.size = sizeof(buffer);
print.callback = callback;
print.context = context;
mpack_node_print_element(node, &print, 0);
mpack_print_flush(&print);
}
void mpack_node_print_to_file(mpack_node_t node, FILE* file) {
mpack_assert(file != NULL, "file is NULL");
char buffer[1024];
mpack_print_t print;
mpack_memset(&print, 0, sizeof(print));
print.buffer = buffer;
print.size = sizeof(buffer);
print.callback = &mpack_print_file_callback;
print.context = file;
size_t depth = 2;
for (size_t i = 0; i < depth; ++i)
mpack_print_append_cstr(&print, " ");
mpack_node_print_element(node, &print, depth);
mpack_print_append_cstr(&print, "\n");
mpack_print_flush(&print);
}
#endif
/*
* Node Value Functions
*/
#if MPACK_EXTENSIONS
mpack_timestamp_t mpack_node_timestamp(mpack_node_t node) {
mpack_timestamp_t timestamp = {0, 0};
// we'll let mpack_node_exttype() do most checks
if (mpack_node_exttype(node) != MPACK_EXTTYPE_TIMESTAMP) {
mpack_log("exttype %i\n", mpack_node_exttype(node));
mpack_node_flag_error(node, mpack_error_type);
return timestamp;
}
const char* p = mpack_node_data_unchecked(node);
switch (node.data->len) {
case 4:
timestamp.nanoseconds = 0;
timestamp.seconds = mpack_load_u32(p);
break;
case 8: {
uint64_t value = mpack_load_u64(p);
timestamp.nanoseconds = (uint32_t)(value >> 34);
timestamp.seconds = value & ((UINT64_C(1) << 34) - 1);
break;
}
case 12:
timestamp.nanoseconds = mpack_load_u32(p);
timestamp.seconds = mpack_load_i64(p + 4);
break;
default:
mpack_tree_flag_error(node.tree, mpack_error_invalid);
return timestamp;
}
if (timestamp.nanoseconds > MPACK_TIMESTAMP_NANOSECONDS_MAX) {
mpack_tree_flag_error(node.tree, mpack_error_invalid);
mpack_timestamp_t zero = {0, 0};
return zero;
}
return timestamp;
}
int64_t mpack_node_timestamp_seconds(mpack_node_t node) {
return mpack_node_timestamp(node).seconds;
}
uint32_t mpack_node_timestamp_nanoseconds(mpack_node_t node) {
return mpack_node_timestamp(node).nanoseconds;
}
#endif
/*
* Node Data Functions
*/
void mpack_node_check_utf8(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return;
mpack_node_data_t* data = node.data;
if (data->type != mpack_type_str || !mpack_utf8_check(mpack_node_data_unchecked(node), data->len))
mpack_node_flag_error(node, mpack_error_type);
}
void mpack_node_check_utf8_cstr(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return;
mpack_node_data_t* data = node.data;
if (data->type != mpack_type_str || !mpack_utf8_check_no_null(mpack_node_data_unchecked(node), data->len))
mpack_node_flag_error(node, mpack_error_type);
}
size_t mpack_node_copy_data(mpack_node_t node, char* buffer, size_t bufsize) {
if (mpack_node_error(node) != mpack_ok)
return 0;
mpack_assert(bufsize == 0 || buffer != NULL, "buffer is NULL for maximum of %i bytes", (int)bufsize);
mpack_type_t type = node.data->type;
if (type != mpack_type_str && type != mpack_type_bin
#if MPACK_EXTENSIONS
&& type != mpack_type_ext
#endif
) {
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
if (node.data->len > bufsize) {
mpack_node_flag_error(node, mpack_error_too_big);
return 0;
}
mpack_memcpy(buffer, mpack_node_data_unchecked(node), node.data->len);
return (size_t)node.data->len;
}
size_t mpack_node_copy_utf8(mpack_node_t node, char* buffer, size_t bufsize) {
if (mpack_node_error(node) != mpack_ok)
return 0;
mpack_assert(bufsize == 0 || buffer != NULL, "buffer is NULL for maximum of %i bytes", (int)bufsize);
mpack_type_t type = node.data->type;
if (type != mpack_type_str) {
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
if (node.data->len > bufsize) {
mpack_node_flag_error(node, mpack_error_too_big);
return 0;
}
if (!mpack_utf8_check(mpack_node_data_unchecked(node), node.data->len)) {
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
mpack_memcpy(buffer, mpack_node_data_unchecked(node), node.data->len);
return (size_t)node.data->len;
}
void mpack_node_copy_cstr(mpack_node_t node, char* buffer, size_t bufsize) {
// we can't break here because the error isn't recoverable; we
// have to add a null-terminator.
mpack_assert(buffer != NULL, "buffer is NULL");
mpack_assert(bufsize >= 1, "buffer size is zero; you must have room for at least a null-terminator");
if (mpack_node_error(node) != mpack_ok) {
buffer[0] = '\0';
return;
}
if (node.data->type != mpack_type_str) {
buffer[0] = '\0';
mpack_node_flag_error(node, mpack_error_type);
return;
}
if (node.data->len > bufsize - 1) {
buffer[0] = '\0';
mpack_node_flag_error(node, mpack_error_too_big);
return;
}
if (!mpack_str_check_no_null(mpack_node_data_unchecked(node), node.data->len)) {
buffer[0] = '\0';
mpack_node_flag_error(node, mpack_error_type);
return;
}
mpack_memcpy(buffer, mpack_node_data_unchecked(node), node.data->len);
buffer[node.data->len] = '\0';
}
void mpack_node_copy_utf8_cstr(mpack_node_t node, char* buffer, size_t bufsize) {
// we can't break here because the error isn't recoverable; we
// have to add a null-terminator.
mpack_assert(buffer != NULL, "buffer is NULL");
mpack_assert(bufsize >= 1, "buffer size is zero; you must have room for at least a null-terminator");
if (mpack_node_error(node) != mpack_ok) {
buffer[0] = '\0';
return;
}
if (node.data->type != mpack_type_str) {
buffer[0] = '\0';
mpack_node_flag_error(node, mpack_error_type);
return;
}
if (node.data->len > bufsize - 1) {
buffer[0] = '\0';
mpack_node_flag_error(node, mpack_error_too_big);
return;
}
if (!mpack_utf8_check_no_null(mpack_node_data_unchecked(node), node.data->len)) {
buffer[0] = '\0';
mpack_node_flag_error(node, mpack_error_type);
return;
}
mpack_memcpy(buffer, mpack_node_data_unchecked(node), node.data->len);
buffer[node.data->len] = '\0';
}
#ifdef MPACK_MALLOC
char* mpack_node_data_alloc(mpack_node_t node, size_t maxlen) {
if (mpack_node_error(node) != mpack_ok)
return NULL;
// make sure this is a valid data type
mpack_type_t type = node.data->type;
if (type != mpack_type_str && type != mpack_type_bin
#if MPACK_EXTENSIONS
&& type != mpack_type_ext
#endif
) {
mpack_node_flag_error(node, mpack_error_type);
return NULL;
}
if (node.data->len > maxlen) {
mpack_node_flag_error(node, mpack_error_too_big);
return NULL;
}
char* ret = (char*) MPACK_MALLOC((size_t)node.data->len);
if (ret == NULL) {
mpack_node_flag_error(node, mpack_error_memory);
return NULL;
}
mpack_memcpy(ret, mpack_node_data_unchecked(node), node.data->len);
return ret;
}
char* mpack_node_cstr_alloc(mpack_node_t node, size_t maxlen) {
if (mpack_node_error(node) != mpack_ok)
return NULL;
// make sure maxlen makes sense
if (maxlen < 1) {
mpack_break("maxlen is zero; you must have room for at least a null-terminator");
mpack_node_flag_error(node, mpack_error_bug);
return NULL;
}
if (node.data->type != mpack_type_str) {
mpack_node_flag_error(node, mpack_error_type);
return NULL;
}
if (node.data->len > maxlen - 1) {
mpack_node_flag_error(node, mpack_error_too_big);
return NULL;
}
if (!mpack_str_check_no_null(mpack_node_data_unchecked(node), node.data->len)) {
mpack_node_flag_error(node, mpack_error_type);
return NULL;
}
char* ret = (char*) MPACK_MALLOC((size_t)(node.data->len + 1));
if (ret == NULL) {
mpack_node_flag_error(node, mpack_error_memory);
return NULL;
}
mpack_memcpy(ret, mpack_node_data_unchecked(node), node.data->len);
ret[node.data->len] = '\0';
return ret;
}
char* mpack_node_utf8_cstr_alloc(mpack_node_t node, size_t maxlen) {
if (mpack_node_error(node) != mpack_ok)
return NULL;
// make sure maxlen makes sense
if (maxlen < 1) {
mpack_break("maxlen is zero; you must have room for at least a null-terminator");
mpack_node_flag_error(node, mpack_error_bug);
return NULL;
}
if (node.data->type != mpack_type_str) {
mpack_node_flag_error(node, mpack_error_type);
return NULL;
}
if (node.data->len > maxlen - 1) {
mpack_node_flag_error(node, mpack_error_too_big);
return NULL;
}
if (!mpack_utf8_check_no_null(mpack_node_data_unchecked(node), node.data->len)) {
mpack_node_flag_error(node, mpack_error_type);
return NULL;
}
char* ret = (char*) MPACK_MALLOC((size_t)(node.data->len + 1));
if (ret == NULL) {
mpack_node_flag_error(node, mpack_error_memory);
return NULL;
}
mpack_memcpy(ret, mpack_node_data_unchecked(node), node.data->len);
ret[node.data->len] = '\0';
return ret;
}
#endif
/*
* Compound Node Functions
*/
static mpack_node_data_t* mpack_node_map_int_impl(mpack_node_t node, int64_t num) {
if (mpack_node_error(node) != mpack_ok)
return NULL;
if (node.data->type != mpack_type_map) {
mpack_node_flag_error(node, mpack_error_type);
return NULL;
}
mpack_node_data_t* found = NULL;
for (size_t i = 0; i < node.data->len; ++i) {
mpack_node_data_t* key = mpack_node_child(node, i * 2);
if ((key->type == mpack_type_int && key->value.i == num) ||
(key->type == mpack_type_uint && num >= 0 && key->value.u == (uint64_t)num))
{
if (found) {
mpack_node_flag_error(node, mpack_error_data);
return NULL;
}
found = mpack_node_child(node, i * 2 + 1);
}
}
if (found)
return found;
return NULL;
}
static mpack_node_data_t* mpack_node_map_uint_impl(mpack_node_t node, uint64_t num) {
if (mpack_node_error(node) != mpack_ok)
return NULL;
if (node.data->type != mpack_type_map) {
mpack_node_flag_error(node, mpack_error_type);
return NULL;
}
mpack_node_data_t* found = NULL;
for (size_t i = 0; i < node.data->len; ++i) {
mpack_node_data_t* key = mpack_node_child(node, i * 2);
if ((key->type == mpack_type_uint && key->value.u == num) ||
(key->type == mpack_type_int && key->value.i >= 0 && (uint64_t)key->value.i == num))
{
if (found) {
mpack_node_flag_error(node, mpack_error_data);
return NULL;
}
found = mpack_node_child(node, i * 2 + 1);
}
}
if (found)
return found;
return NULL;
}
static mpack_node_data_t* mpack_node_map_str_impl(mpack_node_t node, const char* str, size_t length) {
if (mpack_node_error(node) != mpack_ok)
return NULL;
mpack_assert(length == 0 || str != NULL, "str of length %i is NULL", (int)length);
if (node.data->type != mpack_type_map) {
mpack_node_flag_error(node, mpack_error_type);
return NULL;
}
mpack_tree_t* tree = node.tree;
mpack_node_data_t* found = NULL;
for (size_t i = 0; i < node.data->len; ++i) {
mpack_node_data_t* key = mpack_node_child(node, i * 2);
if (key->type == mpack_type_str && key->len == length &&
mpack_memcmp(str, mpack_node_data_unchecked(mpack_node(tree, key)), length) == 0) {
if (found) {
mpack_node_flag_error(node, mpack_error_data);
return NULL;
}
found = mpack_node_child(node, i * 2 + 1);
}
}
if (found)
return found;
return NULL;
}
static mpack_node_t mpack_node_wrap_lookup(mpack_tree_t* tree, mpack_node_data_t* data) {
if (!data) {
if (tree->error == mpack_ok)
mpack_tree_flag_error(tree, mpack_error_data);
return mpack_tree_nil_node(tree);
}
return mpack_node(tree, data);
}
static mpack_node_t mpack_node_wrap_lookup_optional(mpack_tree_t* tree, mpack_node_data_t* data) {
if (!data) {
if (tree->error == mpack_ok)
return mpack_tree_missing_node(tree);
return mpack_tree_nil_node(tree);
}
return mpack_node(tree, data);
}
mpack_node_t mpack_node_map_int(mpack_node_t node, int64_t num) {
return mpack_node_wrap_lookup(node.tree, mpack_node_map_int_impl(node, num));
}
mpack_node_t mpack_node_map_int_optional(mpack_node_t node, int64_t num) {
return mpack_node_wrap_lookup_optional(node.tree, mpack_node_map_int_impl(node, num));
}
mpack_node_t mpack_node_map_uint(mpack_node_t node, uint64_t num) {
return mpack_node_wrap_lookup(node.tree, mpack_node_map_uint_impl(node, num));
}
mpack_node_t mpack_node_map_uint_optional(mpack_node_t node, uint64_t num) {
return mpack_node_wrap_lookup_optional(node.tree, mpack_node_map_uint_impl(node, num));
}
mpack_node_t mpack_node_map_str(mpack_node_t node, const char* str, size_t length) {
return mpack_node_wrap_lookup(node.tree, mpack_node_map_str_impl(node, str, length));
}
mpack_node_t mpack_node_map_str_optional(mpack_node_t node, const char* str, size_t length) {
return mpack_node_wrap_lookup_optional(node.tree, mpack_node_map_str_impl(node, str, length));
}
mpack_node_t mpack_node_map_cstr(mpack_node_t node, const char* cstr) {
mpack_assert(cstr != NULL, "cstr is NULL");
return mpack_node_map_str(node, cstr, mpack_strlen(cstr));
}
mpack_node_t mpack_node_map_cstr_optional(mpack_node_t node, const char* cstr) {
mpack_assert(cstr != NULL, "cstr is NULL");
return mpack_node_map_str_optional(node, cstr, mpack_strlen(cstr));
}
bool mpack_node_map_contains_int(mpack_node_t node, int64_t num) {
return mpack_node_map_int_impl(node, num) != NULL;
}
bool mpack_node_map_contains_uint(mpack_node_t node, uint64_t num) {
return mpack_node_map_uint_impl(node, num) != NULL;
}
bool mpack_node_map_contains_str(mpack_node_t node, const char* str, size_t length) {
return mpack_node_map_str_impl(node, str, length) != NULL;
}
bool mpack_node_map_contains_cstr(mpack_node_t node, const char* cstr) {
mpack_assert(cstr != NULL, "cstr is NULL");
return mpack_node_map_contains_str(node, cstr, mpack_strlen(cstr));
}
size_t mpack_node_enum_optional(mpack_node_t node, const char* strings[], size_t count) {
if (mpack_node_error(node) != mpack_ok)
return count;
// the value is only recognized if it is a string
if (mpack_node_type(node) != mpack_type_str)
return count;
// fetch the string
const char* key = mpack_node_str(node);
size_t keylen = mpack_node_strlen(node);
mpack_assert(mpack_node_error(node) == mpack_ok, "these should not fail");
// find what key it matches
for (size_t i = 0; i < count; ++i) {
const char* other = strings[i];
size_t otherlen = mpack_strlen(other);
if (keylen == otherlen && mpack_memcmp(key, other, keylen) == 0)
return i;
}
// no matches
return count;
}
size_t mpack_node_enum(mpack_node_t node, const char* strings[], size_t count) {
size_t value = mpack_node_enum_optional(node, strings, count);
if (value == count)
mpack_node_flag_error(node, mpack_error_type);
return value;
}
mpack_type_t mpack_node_type(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return mpack_type_nil;
return node.data->type;
}
bool mpack_node_is_nil(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok) {
// All nodes are treated as nil nodes when we are in error.
return true;
}
return node.data->type == mpack_type_nil;
}
bool mpack_node_is_missing(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok) {
// errors still return nil nodes, not missing nodes.
return false;
}
return node.data->type == mpack_type_missing;
}
void mpack_node_nil(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return;
if (node.data->type != mpack_type_nil)
mpack_node_flag_error(node, mpack_error_type);
}
void mpack_node_missing(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return;
if (node.data->type != mpack_type_missing)
mpack_node_flag_error(node, mpack_error_type);
}
bool mpack_node_bool(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return false;
if (node.data->type == mpack_type_bool)
return node.data->value.b;
mpack_node_flag_error(node, mpack_error_type);
return false;
}
void mpack_node_true(mpack_node_t node) {
if (mpack_node_bool(node) != true)
mpack_node_flag_error(node, mpack_error_type);
}
void mpack_node_false(mpack_node_t node) {
if (mpack_node_bool(node) != false)
mpack_node_flag_error(node, mpack_error_type);
}
uint8_t mpack_node_u8(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0;
if (node.data->type == mpack_type_uint) {
if (node.data->value.u <= UINT8_MAX)
return (uint8_t)node.data->value.u;
} else if (node.data->type == mpack_type_int) {
if (node.data->value.i >= 0 && node.data->value.i <= UINT8_MAX)
return (uint8_t)node.data->value.i;
}
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
int8_t mpack_node_i8(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0;
if (node.data->type == mpack_type_uint) {
if (node.data->value.u <= INT8_MAX)
return (int8_t)node.data->value.u;
} else if (node.data->type == mpack_type_int) {
if (node.data->value.i >= INT8_MIN && node.data->value.i <= INT8_MAX)
return (int8_t)node.data->value.i;
}
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
uint16_t mpack_node_u16(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0;
if (node.data->type == mpack_type_uint) {
if (node.data->value.u <= UINT16_MAX)
return (uint16_t)node.data->value.u;
} else if (node.data->type == mpack_type_int) {
if (node.data->value.i >= 0 && node.data->value.i <= UINT16_MAX)
return (uint16_t)node.data->value.i;
}
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
int16_t mpack_node_i16(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0;
if (node.data->type == mpack_type_uint) {
if (node.data->value.u <= INT16_MAX)
return (int16_t)node.data->value.u;
} else if (node.data->type == mpack_type_int) {
if (node.data->value.i >= INT16_MIN && node.data->value.i <= INT16_MAX)
return (int16_t)node.data->value.i;
}
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
uint32_t mpack_node_u32(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0;
if (node.data->type == mpack_type_uint) {
if (node.data->value.u <= UINT32_MAX)
return (uint32_t)node.data->value.u;
} else if (node.data->type == mpack_type_int) {
if (node.data->value.i >= 0 && node.data->value.i <= UINT32_MAX)
return (uint32_t)node.data->value.i;
}
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
int32_t mpack_node_i32(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0;
if (node.data->type == mpack_type_uint) {
if (node.data->value.u <= INT32_MAX)
return (int32_t)node.data->value.u;
} else if (node.data->type == mpack_type_int) {
if (node.data->value.i >= INT32_MIN && node.data->value.i <= INT32_MAX)
return (int32_t)node.data->value.i;
}
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
uint64_t mpack_node_u64(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0;
if (node.data->type == mpack_type_uint) {
return node.data->value.u;
} else if (node.data->type == mpack_type_int) {
if (node.data->value.i >= 0)
return (uint64_t)node.data->value.i;
}
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
int64_t mpack_node_i64(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0;
if (node.data->type == mpack_type_uint) {
if (node.data->value.u <= (uint64_t)INT64_MAX)
return (int64_t)node.data->value.u;
} else if (node.data->type == mpack_type_int) {
return node.data->value.i;
}
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
unsigned int mpack_node_uint(mpack_node_t node) {
// This should be true at compile-time, so this just wraps the 32-bit function.
if (sizeof(unsigned int) == 4)
return (unsigned int)mpack_node_u32(node);
// Otherwise we use u64 and check the range.
uint64_t val = mpack_node_u64(node);
if (val <= UINT_MAX)
return (unsigned int)val;
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
int mpack_node_int(mpack_node_t node) {
// This should be true at compile-time, so this just wraps the 32-bit function.
if (sizeof(int) == 4)
return (int)mpack_node_i32(node);
// Otherwise we use i64 and check the range.
int64_t val = mpack_node_i64(node);
if (val >= INT_MIN && val <= INT_MAX)
return (int)val;
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
float mpack_node_float(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0.0f;
if (node.data->type == mpack_type_uint)
return (float)node.data->value.u;
else if (node.data->type == mpack_type_int)
return (float)node.data->value.i;
else if (node.data->type == mpack_type_float)
return node.data->value.f;
else if (node.data->type == mpack_type_double)
return (float)node.data->value.d;
mpack_node_flag_error(node, mpack_error_type);
return 0.0f;
}
double mpack_node_double(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0.0;
if (node.data->type == mpack_type_uint)
return (double)node.data->value.u;
else if (node.data->type == mpack_type_int)
return (double)node.data->value.i;
else if (node.data->type == mpack_type_float)
return (double)node.data->value.f;
else if (node.data->type == mpack_type_double)
return node.data->value.d;
mpack_node_flag_error(node, mpack_error_type);
return 0.0;
}
float mpack_node_float_strict(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0.0f;
if (node.data->type == mpack_type_float)
return node.data->value.f;
mpack_node_flag_error(node, mpack_error_type);
return 0.0f;
}
double mpack_node_double_strict(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0.0;
if (node.data->type == mpack_type_float)
return (double)node.data->value.f;
else if (node.data->type == mpack_type_double)
return node.data->value.d;
mpack_node_flag_error(node, mpack_error_type);
return 0.0;
}
#if MPACK_EXTENSIONS
int8_t mpack_node_exttype(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0;
if (node.data->type == mpack_type_ext)
return mpack_node_exttype_unchecked(node);
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
#endif
uint32_t mpack_node_data_len(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0;
mpack_type_t type = node.data->type;
if (type == mpack_type_str || type == mpack_type_bin
#if MPACK_EXTENSIONS
|| type == mpack_type_ext
#endif
)
return (uint32_t)node.data->len;
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
size_t mpack_node_strlen(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0;
if (node.data->type == mpack_type_str)
return (size_t)node.data->len;
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
const char* mpack_node_str(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return NULL;
mpack_type_t type = node.data->type;
if (type == mpack_type_str)
return mpack_node_data_unchecked(node);
mpack_node_flag_error(node, mpack_error_type);
return NULL;
}
const char* mpack_node_data(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return NULL;
mpack_type_t type = node.data->type;
if (type == mpack_type_str || type == mpack_type_bin
#if MPACK_EXTENSIONS
|| type == mpack_type_ext
#endif
)
return mpack_node_data_unchecked(node);
mpack_node_flag_error(node, mpack_error_type);
return NULL;
}
const char* mpack_node_bin_data(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return NULL;
if (node.data->type == mpack_type_bin)
return mpack_node_data_unchecked(node);
mpack_node_flag_error(node, mpack_error_type);
return NULL;
}
size_t mpack_node_bin_size(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0;
if (node.data->type == mpack_type_bin)
return (size_t)node.data->len;
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
size_t mpack_node_array_length(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0;
if (node.data->type != mpack_type_array) {
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
return (size_t)node.data->len;
}
mpack_node_t mpack_node_array_at(mpack_node_t node, size_t index) {
if (mpack_node_error(node) != mpack_ok)
return mpack_tree_nil_node(node.tree);
if (node.data->type != mpack_type_array) {
mpack_node_flag_error(node, mpack_error_type);
return mpack_tree_nil_node(node.tree);
}
if (index >= node.data->len) {
mpack_node_flag_error(node, mpack_error_data);
return mpack_tree_nil_node(node.tree);
}
return mpack_node(node.tree, mpack_node_child(node, index));
}
size_t mpack_node_map_count(mpack_node_t node) {
if (mpack_node_error(node) != mpack_ok)
return 0;
if (node.data->type != mpack_type_map) {
mpack_node_flag_error(node, mpack_error_type);
return 0;
}
return node.data->len;
}
// internal node map lookup
static mpack_node_t mpack_node_map_at(mpack_node_t node, size_t index, size_t offset) {
if (mpack_node_error(node) != mpack_ok)
return mpack_tree_nil_node(node.tree);
if (node.data->type != mpack_type_map) {
mpack_node_flag_error(node, mpack_error_type);
return mpack_tree_nil_node(node.tree);
}
if (index >= node.data->len) {
mpack_node_flag_error(node, mpack_error_data);
return mpack_tree_nil_node(node.tree);
}
return mpack_node(node.tree, mpack_node_child(node, index * 2 + offset));
}
mpack_node_t mpack_node_map_key_at(mpack_node_t node, size_t index) {
return mpack_node_map_at(node, index, 0);
}
mpack_node_t mpack_node_map_value_at(mpack_node_t node, size_t index) {
return mpack_node_map_at(node, index, 1);
}
#endif